Soft magnetic materials for sensor applications in the high frequency range

被引:18
作者
Kurlyandskaya, G. V. [1 ,2 ,3 ]
Shcherbinin, S. V. [3 ,4 ]
Volchkov, S. O. [3 ]
Bhagat, S. M. [5 ]
Calle, E. [6 ]
Perez, R. [6 ]
Vazquez, M. [3 ,6 ]
机构
[1] Univ Pais Vasco UPV EHU, Leioa 48940, Spain
[2] BCMaterials, Dept Elect & Elect, Leioa 48940, Spain
[3] Ural Fed Univ, Lab Magnet Sensors, Ekaterinburg 620002, Russia
[4] Inst Electrophys, Amundsen Str 106, Ekaterinburg 620016, Russia
[5] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[6] CSIC, Inst Ciencia Mat, Madrid 28049, Spain
关键词
Soft magnetic materials; Magnetic wires; Ferromagnetic resonance; Low field microwave magnetoimpedance; Vector network analysis; COATED AMORPHOUS MICROWIRES; GIANT MAGNETOIMPEDANCE; WIRE;
D O I
10.1016/j.jmmm.2017.11.051
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The increase in the number of materials for research and extending the list of their applications requires a parallel optimization of the methods of characterization. Microwave magnetoimpedance (MI) in low magnetic fields was proposed for the characterization of the axial magnetization process in different materials. Characterization of the same parameter using different techniques becomes increasingly required. Here we describe our experience in the comparative analysis of magnetic properties, giant magnetoimpedance, ferromagnetic resonance (FMR), and low field MI of CuBe/Fe19Co17Ni64 electroplated and (Co0.94Fe0.06)(72.5)Si12.5B15 in-water solidified amorphous wires. Microwave studies were conducted using specially designed installation on the basis of Rohde & Schwarz ZVA-67 Vector Network Analyzer for two lengths of the wire of 3 and 6 mm. FMR was also measured using classic cavity perturbation technique. The analysis of the results allows us to observe evolution of the intensity of two absorption peaks and conclude the corresponding to MI and FMR features. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:154 / 158
页数:5
相关论文
共 16 条
[1]   GIANT MAGNETIC-FIELD DEPENDENT IMPEDANCE OF AMORPHOUS FECOSIB WIRE [J].
BEACH, RS ;
BERKOWITZ, AE .
APPLIED PHYSICS LETTERS, 1994, 64 (26) :3652-3654
[2]   Modelling of microwave magnetoabsorption in magnetic microwires [J].
Booth, R. J. ;
Lofland, S. E. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (09)
[3]   The effect of surface domain structure on low-field microwave absorption of magnetic microwires [J].
Buznikov, N. A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (05)
[4]  
Kittel C., 2018, Introduction to Solid State Physics
[5]   Magnetoimpedance Sensitive Elements Based on CuBe/FeCoNi Electroplated Wires in Single and Double Wire Configurations [J].
Kurlyandskaya, G. V. ;
El Kammouni, Rhimou ;
Volchkov, S. O. ;
Shcherbinin, S. V. ;
Larranaga, A. .
IEEE TRANSACTIONS ON MAGNETICS, 2017, 53 (04)
[6]   Magnetosensitive Transducers for Nondestructive Testing Operating on the Basis of the Giant Magnetoimpedance Effect: A Review [J].
Kurlyandskaya, G. V. ;
de Cos, D. ;
Volchkov, S. O. .
RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 2009, 45 (06) :377-398
[7]   Microwave magnetoabsorption in glass-coated amorphous microwires with radii close to skin depth [J].
Lofland, SE ;
Garcia-Miquel, H ;
Vazquez, M ;
Bhagat, SM .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (04) :2058-2063
[8]   Low-field microwave magnetoimpedance in amorphous microwires [J].
Lofland, SE ;
Bhagat, SM ;
Domínguez, M ;
García-Beneytez, JM ;
Guerrero, F ;
Vázquez, M .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (08) :4442-4444
[9]   MAGNETIC-FIELD SENSORS BASED ON AMORPHOUS RIBBONS [J].
MAKHOTKIN, VE ;
SHURUKHIN, BP ;
LOPATIN, VA ;
MARCHUKOV, PY ;
LEVIN, YK .
SENSORS AND ACTUATORS A-PHYSICAL, 1991, 27 (1-3) :759-762
[10]   DC and AC linear magnetic field sensor based on glass coated amorphous microwires with Giant Magnetoimpedance [J].
Manuel Garcia-Chocano, Victor ;
Garcia-Miquel, Hector .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2015, 378 :485-492