Succinate production from CO2-grown microalgal biomass as carbon source using engineered Corynebacterium glutamicum through consolidated bioprocessing

被引:31
作者
Lee, Jungseok [1 ,2 ]
Sim, Sang Jun [2 ,3 ]
Bott, Michael [4 ]
Um, Youngsoon [1 ,5 ]
Oh, Min-Kyu [2 ]
Woo, Han Min [1 ,3 ,5 ]
机构
[1] Korea Inst Sci & Technol, Clean Energy Res Ctr, Seoul, South Korea
[2] Korea Univ, Dept Chem & Biol Engn, Seoul, South Korea
[3] Korea Univ, Green Sch, Seoul, South Korea
[4] Forschungszentrum Julich, Inst Bio & Geosci, IBG Biotechnol 1, D-52425 Julich, Germany
[5] Korea Univ Sci & Technol, Dept Clean Energy & Chem Engn, Taejon, South Korea
基金
新加坡国家研究基金会;
关键词
CHLAMYDOMONAS-REINHARDTII BIOMASS; L-LYSINE PRODUCTION; ALPHA-AMYLASE; SOLUBLE STARCH; CELL-SURFACE; PRETREATMENT; ETHANOL; GROWTH; CONVERSION; SEQUENCE;
D O I
10.1038/srep05819
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The potential for production of chemicals from microalgal biomass has been considered as an alternative route for CO2 mitigation and establishment of biorefineries. This study presents the development of consolidated bioprocessing for succinate production from microalgal biomass using engineered Corynebacterium glutamicum. Starch-degrading and succinate-producing C. glutamicum strains produced succinate (0.16 g succinate/g total carbon source) from a mixture of starch and glucose as a model microalgal biomass. Subsequently, the engineered C. glutamicum strains were able to produce succinate (0.28 g succinate/g of total sugars including starch) from pretreated microalgal biomass of CO2-grown Chlamydomonas reinhardtii. For the first time, this work shows succinate production from CO2 via sequential fermentations of CO2-grown microalgae and engineered C. glutamicum. Therefore, consolidated bioprocessing based on microalgal biomass could be useful to promote variety of biorefineries.
引用
收藏
页数:6
相关论文
共 35 条
[1]   Direct L-lysine production from cellobiose by Corynebacterium glutamicum displaying beta-glucosidase on its cell surface [J].
Adachi, Noriko ;
Takahashi, Chihiro ;
Ono-Murota, Naoko ;
Yamaguchi, Rie ;
Tanaka, Tsutomu ;
Kondo, Akihiko .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2013, 97 (16) :7165-7172
[2]   Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes [J].
Aikawa, Shimpei ;
Joseph, Ancy ;
Yamada, Ryosuke ;
Izumi, Yoshihiro ;
Yamagishi, Takahiro ;
Matsuda, Fumio ;
Kawai, Hiroshi ;
Chang, Jo-Shu ;
Hasunuma, Tomohisa ;
Kondo, Akihiko .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) :1844-1849
[3]   Bio-based production of chemicals, materials and fuels - Corynebacterium glutamicum as versatile cell factory [J].
Becker, Judith ;
Wittmann, Christoph .
CURRENT OPINION IN BIOTECHNOLOGY, 2012, 23 (04) :631-640
[4]   Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli [J].
Bokinsky, Gregory ;
Peralta-Yahya, Pamela P. ;
George, Anthe ;
Holmes, Bradley M. ;
Steen, Eric J. ;
Dietrich, Jeffrey ;
Lee, Taek Soon ;
Tullman-Ercek, Danielle ;
Voigt, Christopher A. ;
Simmons, Blake A. ;
Keasling, Jay D. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (50) :19949-19954
[5]   Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production [J].
Choi, Seung Phill ;
Nguyen, Minh Thu ;
Sim, Sang Jun .
BIORESOURCE TECHNOLOGY, 2010, 101 (14) :5330-5336
[6]   A COLORIMETRIC METHOD FOR THE DETERMINATION OF SUGARS [J].
DUBOIS, M ;
GILLES, K ;
HAMILTON, JK ;
REBERS, PA ;
SMITH, F .
NATURE, 1951, 168 (4265) :167-167
[7]  
Eggeling L., 2005, Handbook of Corynebacterium Glutamicum, DOI [10.1201/9781420039696, DOI 10.1201/9781420039696]
[8]   Bioethanol production, using carbohydrate-rich microalgae biomass as feedstock [J].
Ho, Shih-Hsin ;
Huang, Shu-Wen ;
Chen, Chun-Yen ;
Hasunuma, Tomohisa ;
Kondo, Akihiko ;
Chang, Jo-Shu .
BIORESOURCE TECHNOLOGY, 2013, 135 :191-198
[9]   Sugar transport systems in Corynebacterium glutamicum: features and applications to strain development [J].
Ikeda, Masato .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 96 (05) :1191-1200
[10]   Micro and macroalgal biomass: A renewable source for bioethanol [J].
John, Rojan P. ;
Anisha, G. S. ;
Nampoothiri, K. Madhavan ;
Pandey, Ashok .
BIORESOURCE TECHNOLOGY, 2011, 102 (01) :186-193