Multiatlas Segmentation as Nonparametric Regression

被引:22
作者
Awate, Suyash P. [1 ]
Whitaker, Ross T. [2 ,3 ]
机构
[1] Indian Inst Technol IIT Bombay, Comp Sci & Engn Dept, Mumbai 400076, Maharashtra, India
[2] Univ Utah, Sci Comp & Imaging SCI Inst, Salt Lake City, UT 84112 USA
[3] Univ Utah, Sch Comp, Salt Lake City, UT 84112 USA
关键词
k-nearest-neighbor (kNN); label fusion; multi-atlas; nonparametric; regression; segmentation; IMAGE SEGMENTATION; BRAIN;
D O I
10.1109/TMI.2014.2321281
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper proposes a novel theoretical framework to model and analyze the statistical characteristics of a wide range of segmentation methods that incorporate a database of label maps or atlases; such methods are termed as label fusion or multiatlas segmentation. We model these multiatlas segmentation problems as nonparametric regression problems in the high-dimensional space of image patches. We analyze the nonparametric estimator's convergence behavior that characterizes expected segmentation error as a function of the size of the multiatlas database. We show that this error has an analytic form involving several parameters that are fundamental to the specific segmentation problem (determined by the chosen anatomical structure, imaging modality, registration algorithm, and label-fusion algorithm). We describe how to estimate these parameters and show that several human anatomical structures exhibit the trends modeled analytically. We use these parameter estimates to optimize the regression estimator. We show that the expected error for large database sizes is well predicted by models learned on small databases. Thus, a few expert segmentations can help predict the database sizes required to keep the expected error below a specified tolerance level. Such cost-benefit analysis is crucial for deploying clinical multiatlas segmentation systems.
引用
收藏
页码:1803 / 1817
页数:15
相关论文
共 35 条
[1]   Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy [J].
Aljabar, P. ;
Heckemann, R. A. ;
Hammers, A. ;
Hajnal, J. V. ;
Rueckert, D. .
NEUROIMAGE, 2009, 46 (03) :726-738
[2]  
[Anonymous], 1990, APPL NONPARAMETRIC R, DOI DOI 10.1017/CCOL0521382483
[3]   Combination Strategies in Multi-Atlas Image Segmentation: Application to Brain MR Data [J].
Artaechevarria, Xabier ;
Munoz-Barrutia, Arrate ;
Ortiz-de-Solorzano, Carlos .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (08) :1266-1277
[4]  
Awate Suyash P, 2012, Med Image Comput Comput Assist Interv, V7509, P103, DOI 10.1007/978-3-642-33530-3_9
[5]   A review of atlas-based segmentation for magnetic resonance brain images [J].
Cabezas, Mariano ;
Oliver, Arnau ;
Llado, Xavier ;
Freixenet, Jordi ;
Cuadra, Meritxell Bach .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2011, 104 (03) :E158-E177
[6]   On Local Intrinsic Dimension Estimation and Its Applications [J].
Carter, Kevin M. ;
Raich, Raviv ;
Hero, Alfred O., III .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (02) :650-663
[7]   Estimation of Inferential Uncertainty in Assessing Expert Segmentation Performance From STAPLE [J].
Commowick, Olivier ;
Warfield, Simon K. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (03) :771-780
[8]  
de Ridder D, 2003, LECT NOTES COMPUT SC, V2714, P333
[9]  
DePangher M., 2010, Marigold Mine Project: Petrographic Report, P1
[10]   Using Manifold Learning for Atlas Selection in Multi-Atlas Segmentation [J].
Duc, Albert K. Hoang ;
Modat, Marc ;
Leung, Kelvin K. ;
Cardoso, M. Jorge ;
Barnes, Josephine ;
Kadir, Timor ;
Ourselin, Sebastien .
PLOS ONE, 2013, 8 (08)