Selection of number of principal components for de-noising signals

被引:7
作者
Koutsogiannis, GS [1 ]
Soraghan, JJ
机构
[1] Xidian Univ, Grad Sch, Xian, Peoples R China
[2] Shenzhen Univ, President Off, Shen Zhen, Peoples R China
关键词
D O I
10.1049/el:20020424
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Principal component anal si, (PCA) is a tran transformation technique Used to reduce the dimensionality of a data,et. Using delay embedding, it is possible to know a priori how many principal components to choose to obtain the optimum reconstruction. A novel nonlinear PCA-based scheme employing delay embedding is presented for the de-noising, of communication signals.
引用
收藏
页码:664 / 666
页数:3
相关论文
共 7 条
[1]  
CHATFIELD C, 1980, INTRO MULTIVARIATE A
[2]  
Cristianini N, 2000, Intelligent Data Analysis: An Introduction
[3]  
KOUTSOGIANNIS GS, 2002, IN PRESS ICASSP 2002
[4]  
KOUTSOGIANNIS GS, 2002, IN PRESS 3 IEEE BEN
[5]   EMBEDOLOGY [J].
SAUER, T ;
YORKE, JA ;
CASDAGLI, M .
JOURNAL OF STATISTICAL PHYSICS, 1991, 65 (3-4) :579-616
[6]  
SCHOLKOPF B, 1999, IEEE T NEURAL NETW, V100
[7]  
Takens F., 1981, LECT NOTES MATH, V1980, P366, DOI [DOI 10.1007/BFB0091924, 10.1007/BFb0091924]