Sparse Polynomial Space Approach to Dissipative Quantum Systems: Application to the Sub-Ohmic Spin-Boson Model

被引:93
作者
Alvermann, A. [1 ]
Fehske, H. [1 ]
机构
[1] Ernst Moritz Arndt Univ Greifswald, Inst Phys, D-17489 Greifswald, Germany
关键词
D O I
10.1103/PhysRevLett.102.150601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a general numerical approach to open quantum systems with a coupling to bath degrees of freedom. The technique combines the methodology of polynomial expansions of spectral functions with the sparse grid concept from interpolation theory. Thereby we construct a Hilbert space of moderate dimension to represent the bath degrees of freedom, which allows us to perform highly accurate and efficient calculations of static, spectral, and dynamic quantities using standard exact diagonalization algorithms. The strength of the approach is demonstrated for the phase transition, critical behavior, and dissipative spin dynamics in the spin-boson model.
引用
收藏
页数:4
相关论文
共 15 条
[1]   Chebyshev approach to quantum systems coupled to a bath [J].
Alvermann, Andreas ;
Fehske, Holger .
PHYSICAL REVIEW B, 2008, 77 (04)
[2]   Spin precession and real-time dynamics in the Kondo model: Time-dependent numerical renormalization-group study [J].
Anders, Frithjof B. ;
Schiller, Avraham .
PHYSICAL REVIEW B, 2006, 74 (24)
[3]  
[Anonymous], 1963, Dokl. Akad. Nauk SSSR
[4]   Numerical renormalization group for bosonic systems and application to the sub-ohmic spin-boson model [J].
Bulla, R ;
Tong, NH ;
Vojta, M .
PHYSICAL REVIEW LETTERS, 2003, 91 (17)
[5]   Numerical renormalization group method for quantum impurity systems [J].
Bulla, Ralf ;
Costi, Theo A. ;
Pruschke, Thomas .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :395-450
[6]   CORRELATED ELECTRONS IN HIGH-TEMPERATURE SUPERCONDUCTORS [J].
DAGOTTO, E .
REVIEWS OF MODERN PHYSICS, 1994, 66 (03) :763-840
[7]  
Gautschi W., 2004, Orthogonal Polynomials: Computation and Approximation
[8]   Numerical renormalization-group study of the Bose-Fermi Kondo model [J].
Glossop, MT ;
Ingersent, K .
PHYSICAL REVIEW LETTERS, 2005, 95 (06)
[9]   Real time evolution in quantum many-body systems with unitary perturbation theory [J].
Hackl, A. ;
Kehrein, S. .
PHYSICAL REVIEW B, 2008, 78 (09)
[10]   Entanglement entropy, decoherence, and quantum phase transitions of a dissipative two-level system [J].
Le Hur, K. .
ANNALS OF PHYSICS, 2008, 323 (09) :2208-2240