COMPLEXITY OF QUASIVARIETY LATTICES

被引:12
作者
Schwidefsky, M. V. [1 ,2 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
基金
俄罗斯科学基金会;
关键词
computable set; lattice; quasivariety; Q-universality; undecidable problem; universal class; variety; UNIVERSAL VARIETIES; SUBQUASIVARIETY LATTICES; DISTRIBUTIVE LATTICES; QUASIVARIETIES; ALGEBRAS; SEMIGROUPS; HOMOMORPHISMS; GRAPHS;
D O I
10.1007/s10469-015-9344-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If a quasivariety A of algebraic systems of finite signature satisfies some generalization of a sufficient condition for Q-universality treated by M. E. Adams and W. A. Dziobiak, then, for any at most countable set {S-i | i is an element of I} of finite semilattices, the lattice Pi(i is an element of I) Sub(S-i) is a homomorphic image of some sublattice of a quasivariety lattice Lq(A). Specifically, there exists a subclass K subset of A such that the problem of embedding a finite lattice in a lattice Lq(K) of K-quasivarieties is undecidable. This, in particular, implies a recent result of A. M. Nurakunov.
引用
收藏
页码:245 / 257
页数:13
相关论文
共 42 条
[1]  
Adams M. E., 1995, Studia Logica, V54, P371, DOI 10.1007/BF01053005
[2]   HOMOMORPHISMS OF UNARY ALGEBRAS WITH A GIVEN QUOTIENT [J].
ADAMS, ME ;
SICHLER, J .
ALGEBRA UNIVERSALIS, 1990, 27 (02) :194-219
[3]  
ADAMS ME, 1995, FUND MATH, V146, P295
[4]  
ADAMS ME, 1985, HOUSTON J MATH, V11, P129
[5]   Quasivarieties of idempotent semigroups [J].
Adams, ME ;
Dziobiak, W .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2003, 13 (06) :733-752
[6]   Q-universal varieties of bounded lattices [J].
Adams, ME ;
Dziobiak, W .
ALGEBRA UNIVERSALIS, 2002, 48 (03) :333-356
[7]   The lattice of quasivarieties of undirected graphs [J].
Adams, ME ;
Dziobiak, W .
ALGEBRA UNIVERSALIS, 2002, 47 (01) :7-11
[8]   QUASIVARIETIES OF DISTRIBUTIVE LATTICES WITH A QUANTIFIER [J].
ADAMS, ME ;
DZIOBIAK, W .
DISCRETE MATHEMATICS, 1994, 135 (1-3) :15-28
[9]   Finite-to-finite universal quasivarieties are Q-universal [J].
Adams, ME ;
Dziobiak, W .
ALGEBRA UNIVERSALIS, 2001, 46 (1-2) :253-283
[10]   Q-UNIVERSAL QUASIVARIETIES OF ALGEBRAS [J].
ADAMS, ME ;
DZIOBIAK, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (04) :1053-1059