Phase equilibrium modeling for binary systems containing CO2 using artificial neural networks

被引:0
|
作者
Atashrouz, S. [1 ]
Mirshekar, H. [1 ]
机构
[1] Amirkabir Univ Technol, Tehran Polytech, Dept Chem Engn, Mahshahr, Iran
来源
BULGARIAN CHEMICAL COMMUNICATIONS | 2014年 / 46卷 / 01期
关键词
vapor liquid equilibria; carbon dioxide; modeling; artificial neural network; supercritical fluid extraction; refrigerant; VAPOR-LIQUID-EQUILIBRIA; PLUS CARBON-DIOXIDE; ETHYL CAPRYLATE; CRITICAL-POINTS; ESSENTIAL OIL; VLE DATA; TEMPERATURES; PREDICTION; PRESSURES; MIXTURES;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, two mathematical models based on the Feed-Forward Back Propagation Artificial Neural Network (FFBP-ANN) are employed for the prediction of CO2 mole fraction in liquid (x(1)) and vapor (y(1)) phases in the Vapor Liquid Equilibrium (VLE) for fifty-six CO2-containing binary mixtures. 2104 data sets from the open literature have been used to construct the models. Furthermore, some new experimental data (not applied in ANN training) have been used to examine the reliability of the model. Predictions using ANN were compared with available literature data and the results confirm that there is a reasonable conformity between the predicted values and the experimental data. The average absolute deviation percent (AAD (%)) for ANN model I (x(1) prediction) and ANN model II (y(1) prediction) are 1.572 and 0.848 respectively. The study shows that the neural network model is a good alternative method for the estimation of phase equilibrium properties for this type of mixtures.
引用
收藏
页码:104 / 116
页数:13
相关论文
共 50 条
  • [1] Simulation and Estimation of Vapor-Liquid Equilibrium for Asymmetric Binary Systems (CO2-Alcohols) Using Artificial Neural Network
    Abedini, Reza
    Zanganeh, Iman
    Mohagheghian, Mohammad
    JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION, 2011, 32 (02) : 105 - 114
  • [2] ESTIMATION OF VAPOUR-LIQUID EQUILIBRIUM DATA FOR BINARY REFRIGERANT SYSTEMS CONTAINING 1,1,1,2,3,3,3-HEPTAFLUOROPROPANE (R227ea) BY USING ARTIFICIAL NEURAL NETWORKS
    Nikkholgh, M. R.
    Moghadassi, A. R.
    Parvizian, F.
    Hosseini, S. M.
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2010, 88 (02) : 200 - 207
  • [3] Prediction of phase equilibrium of CO2/cyclic compound binary mixtures using a rigorous modeling approach
    Mesbah, Mohammad
    Soroush, Ebrahim
    Shokrollahi, Amin
    Bahadori, Alireza
    JOURNAL OF SUPERCRITICAL FLUIDS, 2014, 90 : 110 - 125
  • [4] Thermodynamic Modeling Study on Phase Equilibrium of Gas Hydrate Systems for CO2 Capture
    Banafi, Ahmad
    Mohamadi-Baghmolaei, Mohamad
    Hajizadeh, Abdollah
    Azin, Reza
    Izadpanah, Amir Abbas
    JOURNAL OF SOLUTION CHEMISTRY, 2019, 48 (11-12) : 1461 - 1487
  • [5] Phase equilibrium modeling of gas hydrate systems for CO2 capture
    Herslund, Peter Jorgensen
    Thomsen, Kaj
    Abildskov, Jens
    von Solms, Nicolas
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2012, 48 : 13 - 27
  • [6] Phase equilibrium of PVAc CO2 binary systems and PVAc CO2 + ethanol ternary systems
    Zhu, Teng
    Gong, Houjian
    Dong, Mingzhe
    Yang, Zehao
    Guo, Chunqing
    Liu, Mei
    FLUID PHASE EQUILIBRIA, 2018, 458 : 264 - 271
  • [7] Modeling of CO2 loading in aqueous solutions of piperazine: Application of an enhanced artificial neural network algorithm
    Norouzbahari, Somayeh
    Shahhosseini, Shahrokh
    Ghaemi, Ahad
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2015, 24 : 18 - 25
  • [8] Predicting CO2 equilibrium solubility in various amine-CO2 systems using an artificial neural network model
    Wahyudi, Apri
    Suriyapraphadilok, Uthaiporn
    ENERGY AND AI, 2024, 18
  • [9] Modeling the performance of cold plasma in CO2 splitting using artificial neural networks
    Nazari, Roshanak Rafiei
    Hajizadeh, Kobra
    AIP ADVANCES, 2022, 12 (08)
  • [10] Thermodynamic study of binary and ternary systems containing CO2 + impurities in the context of CO2 transportation
    Coquelet, Christophe
    Valtz, Alain
    Arpentinier, Philippe
    FLUID PHASE EQUILIBRIA, 2014, 382 : 205 - 211