Compactness of Hankel operators and analytic discs in the boundary of pseudoconvex domains

被引:23
作者
Cuckovic, Zeljko [2 ]
Sahutoglu, Soenmez [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Toledo, Dept Math, Toledo, OH 43606 USA
基金
美国国家科学基金会;
关键词
Hankel operators; (partial derivative)over-bar-Neumann problem; Pseudoconvex; Analytic discs; DERIVATIVE-NEUMANN PROBLEM; BERGMAN SPACES; TOEPLITZ-OPERATORS;
D O I
10.1016/j.jfa.2009.02.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using several complex variables techniques, we investigate the interplay between the geometry of the boundary and compactness of Hankel operators. Let P be a function smooth up to the boundary on a smooth bounded pseudoconvex domain Omega subset of C-n. We show that, if Omega is convex or the Levi form of the boundary of Q is of rank at least n - 2, then compactness of the Hankel operator H-beta implies that beta is holomorphic "along" analytic discs in the boundary. Furthermore, when Omega is convex in C-2 we show that the condition on is necessary and sufficient for compactness of H-beta. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:3730 / 3742
页数:13
相关论文
共 27 条
[1]  
Adamyan Vadim Movsesovich, 1971, Matematicheskii Sbornik, V128, P34
[2]  
[Anonymous], 2006, THESIS TEXAS A M U T
[4]   ON THE BOUNDEDNESS AND COMPACTNESS OF OPERATORS OF HANKEL TYPE [J].
BEATROUS, F ;
LI, SY .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 111 (02) :350-379
[5]   BMO IN THE BERGMAN METRIC ON BOUNDED SYMMETRICAL DOMAINS [J].
BEKOLLE, D ;
BERGER, CA ;
COBURN, LA ;
ZHU, KH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 93 (02) :310-350
[6]  
CELIK M, COMPLEX VAR IN PRESS
[7]  
Chen So-Chin, 2001, AMS/IP Stud. Adv. Math., V19
[8]  
Fu SQ, 2001, OHIO ST U M, V9, P141
[9]   Compactness of the partial derivative-Neumann problem on convex domains [J].
Fu, SQ ;
Straube, EJ .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 159 (02) :629-641