Geometric inequalities for fractional Laplace operators and applications

被引:5
作者
Cinti, Eleonora [1 ]
Ferrari, Fausto [2 ]
机构
[1] Wierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
[2] Univ Bologna, Dipartimento Matemat, I-40126 Bologna, Italy
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2015年 / 22卷 / 06期
关键词
Weighted Poincare inequalities of fractional order; Fractional Laplacian; Hardy-type inequalities;
D O I
10.1007/s00030-015-0340-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a weighted fractional inequality involving the solution u of a nonlocal semilinear problem in . Such inequality bounds a weighted L (2)-norm of a compactly supported function I center dot by a weighted H (s) -norm of I center dot. In this inequality a geometric quantity related to the level sets of u will appear. As a consequence we derive some relations between the stability of u and the validity of fractional Hardy inequalities.
引用
收藏
页码:1699 / 1714
页数:16
相关论文
共 25 条
[1]   A NOTION OF NONLOCAL CURVATURE [J].
Abatangelo, Nicola ;
Valdinoci, Enrico .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2014, 35 (7-9) :793-815
[2]  
[Anonymous], 1990, Hardy-Type Inequalities, Pitman Research Notes in Mathematics Series 219
[3]  
[Anonymous], 2001, T MAT I STEKLOVA
[4]   Layer solutions in a half-space for boundary reactions [J].
Cabré, X ;
Solà-Morales, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (12) :1678-1732
[5]   Sharp energy estimates for nonlinear fractional diffusion equations [J].
Cabre, Xavier ;
Cinti, Eleonora .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (1-2) :233-269
[6]   ENERGY ESTIMATES AND 1-D SYMMETRY FOR NONLINEAR EQUATIONS INVOLVING THE HALF-LAPLACIAN [J].
Cabre, Xavier ;
Cinti, Eleonora .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (03) :1179-1206
[7]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[8]  
D'Ambrosio L, 2005, ANN SCUOLA NORM-SCI, V4, P451
[9]  
Davila J., ARXIV14024173
[10]   Local behavior of fractional p-minimizers [J].
Di Castro, Agnese ;
Kuusi, Tuomo ;
Palatucci, Giampiero .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (05) :1279-1299