Mechanical Properties of Poly(ε-caprolactone) and Poly(lactic acid) Blends

被引:178
|
作者
Simoes, C. L. [1 ,2 ]
Viana, J. C. [1 ,2 ]
Cunha, A. M. [1 ,2 ]
机构
[1] Univ Minho, Dept Polymer Engn, IPC, P-4800058 Guimaraes, Portugal
[2] Innovat Polymer Engn PIEP, P-4800058 Guimaraes, Portugal
关键词
biopolymers; blends; mechanical properties; modeling; BIODEGRADABLE POLYESTERS; DRUG-DELIVERY; POLY(BUTYLENE SUCCINATE); BIO-COMPOSITES; POLYMERS; POLYHYDROXYALKANOATES; CRYSTALLIZATION; BIOCOMPOSITES; BEHAVIOR; FIBERS;
D O I
10.1002/app.29425
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The aim of this work was to better understand the performance of binary blends of biodegradable aliphatic polyesters to overcome some limitations of the pure polymers (e.g., brittleness, low stiffness, and low toughness). Binary blends of poly(epsilon-caprolactone) (PCL) and poly(lactic acid) (PLA) were prepared by melt blending (in a twin-screw extruder) followed by injection molding. The compositions ranged from pure biodegradable polymers to 25 wt% increments. Morphological characterization was performed with scanning electron microscopy and differential scanning calorimetry. The initial modulus, stress and strain at yield, strain at break, and impact toughness of the biodegradable polymer blends were investigated. The properties were described by model,,; assuming different interfacial behaviors (e.g., good adhesion and no adhesion between the dissimilar materials). The results indicated that PCL behaved as a polymeric plasticizer to PLA and improved the flexibility and ductility of the blends, giving the blends higher impact toughness ss. The strain at break was effectively improved by file addition of PCL to PLA, and this was followed by a decrease in the stress at break. The two biodegradable polymers were proved to be immiscible but nevertheless showed some degree of adhesion between the two phases. This was also quantified by the mechanical property prediction models, which, in conjunction with material property characterization, allowed unambiguous detection of the interfacial behavior of the polymer blends. (c) 2008 Wiley Periodicals, Inc. J Appl Polym Sci 112:345-352, 2009
引用
收藏
页码:345 / 352
页数:8
相关论文
共 50 条
  • [1] Mechanical properties of poly(Ε-caprolactone) and poly(lactic acid) blends
    Simões, C.L.
    Viana, J.C.
    Cunha, A.M.
    Journal of Applied Polymer Science, 2009, 112 (01): : 345 - 352
  • [2] Structure and mechanical properties of poly(D,L-lactic acid)/poly(ε-caprolactone) blends
    Broz, ME
    VanderHart, DL
    Washburn, NR
    BIOMATERIALS, 2003, 24 (23) : 4181 - 4190
  • [3] Effects of Poly(ε-caprolactone) on the Properties of Poly(lactic acid)/Poly(butylene succinate) Blends
    Gu T.
    Zhu D.
    Zheng Q.
    Yu J.
    Lu S.
    Lu, Shengjun (sjlu@gzu.edu.cn), 2018, Sichuan University (34): : 42 - 47
  • [4] Comparative studies of mechanical properties of poly(ε-caprolactone) and poly(lactic acid) blends reinforced with natural fibers
    Akos, Noel Ibrahim
    Wahit, Mat Uzir
    Mohamed, Rahmah
    Yussuf, Abdirahman Ali
    COMPOSITE INTERFACES, 2013, 20 (07) : 459 - 467
  • [5] Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic acid)/poly (ε-caprolactone) blends
    Zhao, Haibin
    Zhao, Guoqun
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2016, 53 : 59 - 67
  • [6] Crystallization behavior of poly(lactic acid)/poly(ε-caprolactone) blends
    Lee, JR
    Chun, SW
    Kang, HJ
    POLYMER-KOREA, 2003, 27 (04) : 285 - 292
  • [7] Improvement of microstructures and properties of poly(lactic acid)/poly(ε-caprolactone) blends compatibilized with polyoxymethylene
    Song, Zijian
    Huang, Xiulong
    Lu, Xueli
    Lv, Qiaoqiang
    Xu, Nai
    Pang, Sujuan
    Pan, Lisha
    Li, Tan
    JOURNAL OF APPLIED POLYMER SCIENCE, 2018, 135 (31)
  • [8] Study on the Crystallization, Miscibility, Morphology, Properties of Poly(lactic acid)/Poly(-caprolactone) Blends
    Yeh, Jen-Taut
    Wu, Ching-Ju
    Tsou, Chi-Hui
    Chai, Wan-Lan
    Chow, Jing-Dong
    Huang, Chi-Yuan
    Chen, Kan-Nan
    Wu, Chin-San
    POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2009, 48 (06) : 571 - 578
  • [9] Reactive compatibilization of biodegradable blends of poly(lactic acid) and poly(ε-caprolactone)
    Wang, L
    Ma, W
    Gross, RA
    McCarthy, SP
    POLYMER DEGRADATION AND STABILITY, 1998, 59 (1-3) : 161 - 168
  • [10] Compressive mechanical properties and deformation behavior of porous polymer blends of poly(ε-caprolactone) and poly(l-lactic acid)
    Park, Joo-Eon
    Todo, Mitsugu
    JOURNAL OF MATERIALS SCIENCE, 2011, 46 (24) : 7850 - 7857