KD-MVS: Knowledge Distillation Based Self-supervised Learning for Multi-view Stereo

被引:14
|
作者
Ding, Yikang [1 ,2 ]
Zhu, Qingtian [1 ]
Liu, Xiangyue [1 ]
Yuan, Wentao [1 ]
Zhang, Haotian [1 ]
Zhang, Chi [1 ]
机构
[1] Megvii Res, Beijing, Peoples R China
[2] Tsinghua Univ, Beijing, Peoples R China
来源
COMPUTER VISION, ECCV 2022, PT XXXI | 2022年 / 13691卷
关键词
D O I
10.1007/978-3-031-19821-2_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Supervised multi-view stereo (MVS) methods have achieved remarkable progress in terms of reconstruction quality, but suffer from the challenge of collecting large-scale ground-truth depth. In this paper, we propose a novel self-supervised training pipeline for MVS based on knowledge distillation, termed KD-MVS, which mainly consists of self-supervised teacher training and distillation-based student training. Specifically, the teacher model is trained in a self-supervised fashion using both photometric and featuremetric consistency. Then we distill the knowledge of the teacher model to the student model through probabilistic knowledge transferring. With the supervision of validated knowledge, the student model is able to outperform its teacher by a large margin. Extensive experiments performed on multiple datasets show our method can even outperform supervised methods. Code is available at https://github.com/megvii-research/KD-MVS.
引用
收藏
页码:630 / 646
页数:17
相关论文
共 50 条
  • [1] Self-supervised learning for multi-view stereo
    Ito S.
    Kaneko N.
    Sumi K.
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2020, 86 (12): : 1042 - 1050
  • [2] Self-supervised Learning of Depth Inference for Multi-view Stereo
    Yang, Jiayu
    Alvarez, Jose M.
    Liu, Miaomiao
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 7522 - 7530
  • [3] Digging into Uncertainty in Self-supervised Multi-view Stereo
    Xu, Hongbin
    Zhou, Zhipeng
    Wang, Yali
    Kang, Wenxiong
    Sun, Baigui
    Li, Hao
    Qiao, Yu
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 6058 - 6067
  • [4] Geometric Prior-Guided Self-Supervised Learning for Multi-View Stereo
    Liu, Liman
    Zhang, Fenghao
    Su, Wanjuan
    Qi, Yuhang
    Tao, Wenbing
    REMOTE SENSING, 2023, 15 (08)
  • [5] Self-supervised Multi-view Stereo via View Synthesis Representation Consistency
    Zhang, Hang
    Cao, Jie
    Wu, Xingming
    Liu, Zhong
    Chen, Weihai
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 876 - 881
  • [6] Self-Supervised Representations for Multi-View Reinforcement Learning
    Yang, Huanhuan
    Shi, Dianxi
    Xie, Guojun
    Peng, Yingxuan
    Zhang, Yi
    Yang, Yantai
    Yang, Shaowu
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 2203 - 2213
  • [7] LS-MVSNet: Lightweight self-supervised multi-view stereo
    Liu, Houxuan
    Han, Xiao
    Yang, Lu
    COMPUTERS & GRAPHICS-UK, 2023, 117 : 183 - 191
  • [8] Multi-view self-supervised learning on heterogeneous graphs for recommendation
    Zhang, Yunjia
    Zhang, Yihao
    Liao, Weiwen
    Li, Xiaokang
    Wang, Xibin
    APPLIED SOFT COMPUTING, 2025, 174
  • [9] MVEB: Self-Supervised Learning With Multi-View Entropy Bottleneck
    Wen, Liangjian
    Wang, Xiasi
    Liu, Jianzhuang
    Xu, Zenglin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (09) : 6097 - 6108
  • [10] Incomplete multi-view clustering based on information fusion with self-supervised learning
    Cai, Yilong
    Shu, Qianyu
    Zhou, Zhengchun
    Meng, Hua
    INFORMATION FUSION, 2025, 117