High-throughput calculations in the context of alloy design

被引:25
作者
van de Walle, Axel [1 ]
Asta, Mark [2 ,3 ]
机构
[1] Brown Univ, Sch Engn, Providence, RI 02912 USA
[2] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA USA
基金
美国国家科学基金会;
关键词
alloy; kinetics; phase equilibria; COMPUTATIONAL THERMODYNAMICS; AB-INITIO; PHASE; SOFTWARE; TOOL; TRANSFORMATIONS; MICROSTRUCTURE; EXPLORATION; INTERFACES; CALPHAD;
D O I
10.1557/mrs.2019.71
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Modern approaches to alloy design increasingly exploit the framework of computational thermodynamics and kinetics to guide the selection of alloy compositions and processing strategies, to achieve desired microstructures, and yield tailored properties. In this context, phase diagrams play a critical role and their assessment can represent a bottleneck in the design of new multicomponent systems. In recent years, it has become possible to accelerate this process through the coupling of the CALculation of PHAse Diagram (CALPHAD) computational thermodynamics framework with high-throughput quantum mechanical calculations. This article reviews recent developments and applications in this area, and discusses future opportunities for high-throughput calculations in the context of modeling kinetics, highlighting the important role of interfacial processes and atomic mobilities.
引用
收藏
页码:252 / 256
页数:5
相关论文
共 56 条
  • [1] Efficient exploration of the High Entropy Alloy composition-phase space
    Abu-Odeh, A.
    Galvan, E.
    Kirk, T.
    Mao, H.
    Chen, Q.
    Mason, P.
    Malak, R.
    Arroyave, R.
    [J]. ACTA MATERIALIA, 2018, 152 : 41 - 57
  • [2] Agrawal R, 2017, PHYSREVB, V95, pe597, DOI DOI 10.1103/PhysRevB.95.144113
  • [3] THERMO-CALC & DICTRA, computational tools for materials science
    Andersson, JO
    Helander, T
    Höglund, LH
    Shi, PF
    Sundman, B
    [J]. CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2002, 26 (02): : 273 - 312
  • [4] A COMPOUND-ENERGY MODEL OF ORDERING IN A PHASE WITH SITES OF DIFFERENT COORDINATION NUMBERS
    ANDERSSON, JO
    GUILLERMET, AF
    HILLERT, M
    JANSSON, B
    SUNDMAN, B
    [J]. ACTA METALLURGICA, 1986, 34 (03): : 437 - 445
  • [5] [Anonymous], 2018, MED LETT DRUGS THER, V60, P1
  • [6] [Anonymous], 2004, Accelerating Technology Transition: Bridging the Valley of Death for Materials and Processes in Defense Systems
  • [7] [Anonymous], 2008, Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security
  • [8] [Anonymous], 2011, MAT GENOME INITIATIV
  • [9] FactSage thermochemical software and databases, 2010-2016
    Bale, C. W.
    Belisle, E.
    Chartrand, P.
    Decterov, S. A.
    Eriksson, G.
    Gheribi, A. E.
    Hack, K.
    Jung, I. -H.
    Kang, Y. -B.
    Melancon, J.
    Pelton, A. D.
    Petersen, S.
    Robelin, C.
    Sangster, J.
    Spencer, P.
    Van Ende, M-A.
    [J]. CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2016, 54 : 35 - 53
  • [10] First-principles study of competing mechanisms of nondilute Li diffusion in spinel LixTiS2
    Bhattacharya, Jishnu
    Van der Ven, Anton
    [J]. PHYSICAL REVIEW B, 2011, 83 (14)