Semigroups of transformations preserving an equivalence relation and a cross-section

被引:52
作者
Araújo, J
Konieczny, J
机构
[1] Univ Lisbon, Ctr Algebra, P-1649003 Lisbon, Portugal
[2] Univ Alberta, Escola Politecn R, Lisbon, Portugal
[3] Mary Washington Coll, Dept Math, Fredericksburg, VA 22401 USA
关键词
transformation; equivalence relation; idempotent; centralizer;
D O I
10.1081/AGB-120029913
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a set X, an equivalence relation rho on X, and a cross-section R of the partition X/rho induced by rho, consider the semigroup T(X, rho, R) consisting of all mappings a from X to X such that a preserves both rho (if (x, y) is an element of rho then (xa, ya) is an element of rho) and R (if r is an element of R then ra is an element of R). The semigroup T(X, rho, R) is the centralizer of the idempotent transformation with kernel rho and image R. We determine the structure of T(X, rho, R) in terms of Green's relations, describe the regular elements of T(X, rho, R), and determine the following classes of the semigroups T(X, rho, R); regular, abundant, inverse, and completely regular.
引用
收藏
页码:1917 / 1935
页数:19
相关论文
共 14 条
[1]  
[Anonymous], 1979, SEMIGROUPS COMBINATO
[2]   Automorphism groups of centralizers of idempotents [J].
Araújo, J ;
Konieczny, J .
JOURNAL OF ALGEBRA, 2003, 269 (01) :227-239
[3]  
Feinberg V.Z., 1963, DOKL AKAD NAUK BSSR, V7, P366
[4]  
FOUNTAIN J, 1982, P LOND MATH SOC, V44, P103
[5]   ADEQUATE SEMIGROUPS [J].
FOUNTAIN, J .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1979, 22 (JUN) :113-125
[6]   DIGRAPHS AND THE SEMIGROUP OF ALL FUNCTIONS ON A FINITE-SET [J].
HIGGINS, PM .
GLASGOW MATHEMATICAL JOURNAL, 1988, 30 :41-57
[7]  
Howie J. M., 1995, FUNDAMENTALS SEMIGRO
[8]   Green's relations and regularity in centralizers of permutations [J].
Konieczny, J .
GLASGOW MATHEMATICAL JOURNAL, 1999, 41 :45-57
[9]  
Konieczny J, 2002, ALGEBR COLLOQ, V9, P121
[10]  
KONIECZNY J, 1998, MATH JPN, V48, P367