Optical soliton solutions for the variable coefficient modified Kawahara equation

被引:10
作者
Bekir, Ahmet [1 ]
Guner, Ozkan [2 ]
Bilgil, Halis [3 ]
机构
[1] Eskisehir Osmangazi Univ, Art Sci Fac, Dept Math Comp, Eskisehir, Turkey
[2] Cankiri Karatekin Univ, Fac Econ & Adm Sci, Dept Int Trade, Cankiri, Turkey
[3] Aksaray Univ, Art Sci Fac, Dept Math, Aksaray, Turkey
来源
OPTIK | 2015年 / 126卷 / 20期
关键词
Optical solitons; Exact solution; The variable-coefficient modified Kawahara equation; NONLINEAR EVOLUTION-EQUATIONS; TIME-DEPENDENT COEFFICIENTS; TRAVELING-WAVE SOLUTIONS; F-EXPANSION METHOD; GENERALIZED EVOLUTION; TANH METHOD; (G'/G)-EXPANSION METHOD; 1-SOLITON SOLUTION; DARK SOLITONS; BRIGHT;
D O I
10.1016/j.ijleo.2015.06.051
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we obtain the 1-soliton solutions of the variable-coefficient modified Kawahara equation (VCMKE). The dark optical as well as bright optical soliton solutions were found related to the model considered in this study. The solitary wave ansatz method is used to carry out the integration. (C) 2015 Elsevier GmbH. All rights reserved.
引用
收藏
页码:2518 / 2522
页数:5
相关论文
共 35 条
[1]   The extended F-expansion method and its application for a class of nonlinear evolution equations [J].
Abdou, M. A. .
CHAOS SOLITONS & FRACTALS, 2007, 31 (01) :95-104
[2]  
Ablowitz M. J., 1981, Solitons and the Inverse Scattering Transform
[3]   Application of the (G′/G)-expansion method for nonlinear evolution equations [J].
Bekir, Ahmet .
PHYSICS LETTERS A, 2008, 372 (19) :3400-3406
[4]   New solitons and periodic wave solutions for some nonlinear physical models by using the sine-cosine method [J].
Bekir, Ahmet .
PHYSICA SCRIPTA, 2008, 77 (04)
[5]   Bright and dark solitons of the Rosenau-Kawahara equation with power law nonlinearity [J].
Biswas, A. ;
Triki, H. ;
Labidi, M. .
PHYSICS OF WAVE PHENOMENA, 2011, 19 (01) :24-29
[6]   1-soliton solution of the K(m, n) equation with generalized evolution [J].
Biswas, Anjan .
PHYSICS LETTERS A, 2008, 372 (25) :4601-4602
[7]   1-Soliton solution of the generalized Zakharov-Kuznetsov equation with nonlinear dispersion and time-dependent coefficients [J].
Biswas, Anjan .
PHYSICS LETTERS A, 2009, 373 (33) :2931-2934
[8]   Solitary wave solution for the generalized Kawahara equation [J].
Biswas, Anjan .
APPLIED MATHEMATICS LETTERS, 2009, 22 (02) :208-210
[9]   Bright solitons of the variants of the Novikov-Veselov equation with constant and variable coefficients [J].
Boubir, B. ;
Triki, H. ;
Wazwaz, A. M. .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (1-2) :420-431
[10]   From Laurent series to exact meromorphic solutions: The Kawahara equation [J].
Demina, Maria V. ;
Kudryashov, Nikolay A. .
PHYSICS LETTERS A, 2010, 374 (39) :4023-4029