共 67 条
Differentially expressed genes in autosomal dominant osteopetrosis type II osteoclasts reveal known and novel pathways for osteoclast biology
被引:22
作者:
Coudert, Amelie E.
[1
]
Del Fattore, Andrea
[2
]
Baulard, Celine
[3
]
Olaso, Robert
[3
]
Schiltz, Corinne
[1
]
Collet, Corinne
[1
,4
]
Teti, Anna
[5
]
de Vernejoul, Marie-Christine
[1
,6
]
机构:
[1] Hop Lariboisiere, INSERM, U606, F-75010 Paris, France
[2] Osped Pediat Bambino Gesu, Regenerat Med Unit, Rome, Italy
[3] CEA, Inst Genom, Ctr Natl Genotypage, Evry, France
[4] Hop Lariboisiere, Serv Biochim, F-75010 Paris, France
[5] Univ Aquila, Dept Biotechnol & Appl Clin Sci, I-67100 Laquila, Italy
[6] Hop Lariboisiere, INSERM, Os & Articulat U606, F-75010 Paris, France
关键词:
ADO II;
integrin beta 5;
osteoclasts;
SERPINE2;
WARS;
ALBERS-SCHONBERG-DISEASE;
CHLORIDE CHANNEL;
CLCN7;
GENE;
RECESSIVE OSTEOPETROSIS;
BONE-RESORPTION;
REQUIRES OSTM1;
MICE LACKING;
MUTATIONS;
PERFORIN;
INTEGRINS;
D O I:
10.1038/labinvest.2013.140
中图分类号:
R-3 [医学研究方法];
R3 [基础医学];
学科分类号:
1001 ;
摘要:
Autosomal dominant osteopetrosis type II (ADO II) is a rare, heritable bone disorder characterized by a high bone mass and insufficient osteoclast activity. Mutations in the CLCN7 gene have been reported to cause ADO II. To gain novel insights into the pathways dysregulated in ADOII osteoclasts, we identified changes in gene expression in osteoclasts from patients with a heterozygous mutation of CLCN7. To do this, we carried out a transcriptomic study comparing gene expression in the osteoclasts of patients with ADO II and healthy donors. Our data show that, according to our selection criteria, 182 genes were differentially expressed in osteoclasts from patients and controls. From the 18 displaying the highest change in microarray, we confirmed differential expression for seven by qPCR. Although two of them have previously been found to be expressed in osteoclasts (ITGB5 and SERPINE2), the other five (CES1 (carboxyl esterase 1), UCHL1 (ubiquitin carboxy-terminal esterase L1, also known as ubiquitin thiolesterase), WARS (tryptophanyl-tRNA synthetase), GBP4 (guanylate-binding protein 4), and PRF1) are not yet known to have a role in this cell type. At the protein level, we confirmed elevated expression of ITGB5 and reduced expression of WARS, PRF1, and SERPINE2. Transfection of ClC-7 harboring the G215R mutation into osteoclasts resulted in an increased ITGB5 and reduced PRF1 expression of borderline significance. Finally, we observed that the ADO II patients presented a normal or increased serum level of bone formation markers, demonstrating a coupling between dysfunctional osteoclasts and osteoblasts. Sphingosine kinase 1 mRNA was expressed at the same level in ADO II and control osteoclasts. In conclusion, these data suggest that in addition to an acidification dysfunction caused by the CLCN7 mutation, a change in ITGB5, PRF1, WARS, and SERPINE2 expression could be part of the osteoclastic phenotype of ADO II.
引用
收藏
页码:275 / 285
页数:11
相关论文