Monte Carlo algorithms;
deterministic algorithms;
integral equations;
unimprovable rate of convergence;
D O I:
10.1109/JVA.2006.37
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
The question "what Monte Carlo can do and cannot do efficiently " is discussed for some functional spaces that define the regularity of the input data. Important for practical computations data classes are considered: classes of functions with bounded derivatives and Holder type conditions. Theoretical performance analysis of some algorithms with unimprovable rate of convergence is given. Estimates of complexity of two classes of algorithms - deterministic and randomized for the solution of a class of integral equations are presented.
机构:
LANL, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
LANL, Div Theoret, Los Alamos, NM 87545 USA
Landau Inst Theoret Phys, Moscow 142432, RussiaLANL, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
Turitsyn, Konstantin S.
Chertkov, Michael
论文数: 0引用数: 0
h-index: 0
机构:
LANL, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
LANL, Div Theoret, Los Alamos, NM 87545 USA
Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, IsraelLANL, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA