Ground state of Kirchhoff type fractional Schrodinger equations with critical growth

被引:45
作者
Zhang, Jian [1 ]
Lou, Zhenluo [2 ]
Ji, Yanju [1 ]
Shao, Wei [3 ]
机构
[1] China Univ Petr, Coll Sci, Qingdao 266580, Shandong, Peoples R China
[2] Henan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Peoples R China
[3] QuFu Normal Univ, Sch Management, Rizhao 276826, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Schrodinger equation; Kirchhoff type; Critical growth; Variational method; SCALAR FIELD-EQUATIONS; ELLIPTIC EQUATION; EXISTENCE;
D O I
10.1016/j.jmaa.2018.01.060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the critical Kirchhoff type fractional Schrodinger equation: (1+alpha integral(3)(R)integral(3)(R) |u(x) - u(y)|(2)/|x-y|(3-2s) dxdy) (-Delta)(s)u + u = beta f(u) + u(2*)s 1 in R-3, (0.1) where s is an element of (0, 1) and 2(S)(*) = 6/3-2s. We establish the Pohozaev type identity of (0.1). When s is an element of[3/4, 1), under some conditions on alpha, beta and f (u), we obtain some results on the existence of ground state solutions. When s is an element of (0, 3/4], we also prove the non-existence result. In particular, when alpha = 0, we obtain an existence result. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:57 / 83
页数:27
相关论文
共 33 条
[1]   A critical nonlinear fractional elliptic equation with saddle-like potential in RN [J].
Alves, Claudianor O. ;
Miyagaki, Olimpio H. .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (08)
[2]  
Alves CO, 2016, CALC VAR PARTIAL DIF, V55, DOI 10.1007/s00526-016-0983-x
[3]  
[Anonymous], 1997, Minimax theorems
[4]   Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity [J].
Autuori, Giuseppina ;
Fiscella, Alessio ;
Pucci, Patrizia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 125 :699-714
[5]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[6]  
BERESTYCKI H, 1983, CR ACAD SCI I-MATH, V297, P307
[7]   A concave-convex elliptic problem involving the fractional Laplacian [J].
Braendle, C. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :39-71
[8]   Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates [J].
Cabre, Xavier ;
Sire, Yannick .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01) :23-53
[9]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[10]   Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity [J].
Chang, X. ;
Wang, Z-Q .
NONLINEARITY, 2013, 26 (02) :479-494