Joint Resource and Trajectory Optimization for Security in UAV-Assisted MEC Systems

被引:150
作者
Xu, Yu [1 ]
Zhang, Tiankui [1 ]
Yang, Dingcheng [2 ]
Liu, Yuanwei [3 ]
Tao, Meixia [4 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
[2] Nanchang Univ, Informat Engn Sch, Nanchang 330031, Jiangxi, Peoples R China
[3] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London E1 4NS, England
[4] Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Mobile edge computing; non-orthogonal multiple access; physical layer security; trajectory optimization; unmanned aerial vehicle;
D O I
10.1109/TCOMM.2020.3025910
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Unmanned aerial vehicle (UAV) has been widely applied in internet-of-things (IoT) scenarios while the security for UAV communications remains a challenging problem due to the broadcast nature of the line-of-sight (LoS) wireless channels. This article investigates the security problems for dual UAV-assisted mobile edge computing (MEC) systems, where one UAV is invoked to help the ground terminal devices (TDs) to compute the offloaded tasks and the other one acts as a jammer to suppress the vicious eavesdroppers. In our framework, minimum secure computing capacity maximization problems are proposed for both the time division multiple access (TDMA) scheme and non-orthogonal multiple access (NOMA) scheme by jointly optimizing the communication resources, computation resources, and UAVs' trajectories. The formulated problems are non-trivial and challenging to be solved due to the highly coupled variables. To tackle these problems, we first transform them into more tractable ones then a block coordinate descent based algorithm and a penalized block coordinate descent based algorithm are proposed to solve the problems for TDMA and NOMA schemes, respectively. Finally, numerical results show that the security computing capacity performance of the systems is enhanced by the proposed algorithms as compared with the benchmarks. Meanwhile, the NOMA scheme is superior to the TDMA scheme for security improvement.
引用
收藏
页码:573 / 588
页数:16
相关论文
共 44 条
[1]  
[Anonymous], 2016, CVX: MATLAB Software for Disciplined Convex Programming
[2]   Energy-Efficient Computation Offloading for Secure UAV-Edge-Computing Systems [J].
Bai, Tong ;
Wang, Jingjing ;
Ren, Yong ;
Hanzo, Lajos .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (06) :6074-6087
[3]  
Bertsekas D., 1999, Nonlinear Programming, V2nd
[4]  
Boyd Stephen P., 2014, CONVEX OPTIMIZATION
[5]   Dual-UAV-Enabled Secure Communications: Joint Trajectory Design and User Scheduling [J].
Cai, Yunlong ;
Cui, Fangyu ;
Shi, Qingjiang ;
Zhao, Minjian ;
Li, Geoffrey Ye .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2018, 36 (09) :1972-1985
[6]   Joint Computation and Communication Cooperation for Energy-Efficient Mobile Edge Computing [J].
Cao, Xiaowen ;
Wang, Feng ;
Xu, Jie ;
Zhang, Rui ;
Cui, Shuguang .
IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (03) :4188-4200
[7]   UAV-Relaying-Assisted Secure Transmission With Caching [J].
Cheng, Fen ;
Gui, Guan ;
Zhao, Nan ;
Chen, Yunfei ;
Tang, Jie ;
Sari, Hikmet .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (05) :3140-3153
[8]   Multiple Access for Mobile-UAV Enabled Networks: Joint Trajectory Design and Resource Allocation [J].
Cui, Fangyu ;
Cai, Yunlong ;
Qin, Zhijin ;
Zhao, Minjian ;
Li, Geoffrey Ye .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (07) :4980-4994
[9]   Impact of Non-Orthogonal Multiple Access on the Offloading of Mobile Edge Computing [J].
Ding, Zhiguo ;
Fan, Pingzhi ;
Poor, H. Vincent .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (01) :375-390
[10]   A Survey on Non-Orthogonal Multiple Access for 5G Networks: Research Challenges and Future Trends [J].
Ding, Zhiguo ;
Lei, Xianfu ;
Karagiannidis, George K. ;
Schober, Robert ;
Yuan, Jinhong ;
Bhargava, Vijay K. .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2017, 35 (10) :2181-2195