Convergence of weighted averages of martingales in Banach function spaces

被引:8
作者
Kikuchi, M [1 ]
机构
[1] Toyama Univ, Dept Math, Toyama 9308555, Japan
关键词
martingale; weighted average; Banach function space; rearrangement-invariant space;
D O I
10.1006/jmaa.1999.6683
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f = (f(n))(n greater than or equal to 1) be a martingale and (w(n))(n greater than or equal to 1) a sequence of positive numbers such that W-n = Sigma(k-1)(n)w(k) --> infinity. Kazamaki and Tsuchikura proved that f converges in L-P (1 < p < infinity) if and only if the weighted average (sigma(n)(f))(n greater than or equal to 1) of f converges in L-P, where sigma(n)(f) are given by sigma(n)(f) = 1/W-n (k=1)Sigma(n) w(k)f(k), n = 1, 2, ... . We shall investigate the convergence of f and sigma(n)(f) in general Banach function spaces X. Our main result can be applied to the case where X is a rearrangement-invariant space, or X is a weighted L-P-space with a weight function satisfying the condition A(p) introduced by Izumisawa and Kazamaki. (C) 2000 Academic Press.
引用
收藏
页码:39 / 56
页数:18
相关论文
共 10 条
[1]  
[Anonymous], PURE APPL MATH
[2]  
[Anonymous], 1975, PROBABILITES POTENTI
[3]  
Bennett C., 1988, INTERPOLATION OPERAT
[4]  
CALDERON AP, 1966, STUD MATH, V26, P273
[5]  
Doleans-Dade C., 1979, Lecture Notes in Mathematics, V721, P313
[6]  
Izumisawa M., 1977, TOHOKU MATH J, V29, P115
[7]  
Kazamaki N, 1967, TOHOKU MATH J, V19, P297
[8]  
Kikuchi H, 1999, J MATH ANAL APPL, V234, P193
[9]  
KIKUCHI M, IN PRESS ANAL MATH
[10]  
[No title captured]