Free-standing nitrogen-doped graphene-carbon nanofiber composite mats: electrospinning synthesis and application as anode material for lithium-ion batteries

被引:17
|
作者
Shan, Changsheng [1 ,2 ]
Wang, Yong [3 ]
Xie, Shuya [4 ]
Guan, Hong-Yu [1 ,4 ]
Argueta, Monica [5 ]
Yue, Yanfeng [5 ]
机构
[1] Guangzhou Univ, Sch Chem & Chem Engn, Ctr Adv Analyt Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Hubei Univ, Coll Chem & Chem Engn, Minist Of Educ, Key Lab Synth & Applicat Organ Funct Mol, Wuhan, Hubei, Peoples R China
[3] Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Jiangsu, Peoples R China
[4] Northeast Normal Univ, Dept Chem, Changchun, Jilin, Peoples R China
[5] Sul Ross State Univ, Dept Biol Geol & Phys Sci, Alpine, TX 79832 USA
基金
中国国家自然科学基金;
关键词
graphene; carbon nanofiber; electrospinning; lithium-ion battery; ENERGY-CONVERSION; FRAMEWORKS; STORAGE; SHEETS; METAL;
D O I
10.1002/jctb.6114
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BACKGROUND Graphene and carbon nanofibers have shown outstanding advantages as anode materials in lithium-ion batteries (LIBs) because of their prominent electronic conductivity, outstanding flexibility, high theoretical specific capacity, high specific surface, and chemical durability. Free-standing nanocomposite mats from graphene and carbon nanofibers, without any conductive additive and binder, could improve the weight energy density of the LIBs. RESULTS Nitrogen-doped carbon fiber-reduced graphene oxide (NCNFs-rGO) mats are fabricated by high-temperature thermal treatment of graphene oxide/polyacrylonitrile (PAN-GO) nanofiber composite mats via a simple electrospinning method. The resultant free-standing NCNFs-rGO mats which were systematically characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and electrochemical properties as an anode for LIBs were also measured. Without any conductive additive and binder, the resultant free-standing NCNFs-rGO mats were directly used as an anode material in LIBs. CONCLUSION The LIBs with NCNFs-rGO mats as anodes exhibited a high rate capability and long cycle stability owing to the structural integrity and highly electrical conductivity. (c) 2019 Society of Chemical Industry
引用
收藏
页码:3793 / 3799
页数:7
相关论文
共 50 条
  • [1] Free-Standing Nitrogen-Doped Reduced Graphene Oxide Anode for Lithium-Ion Batteries
    Park, Hyun Ho
    Choi, Youngeun
    Kim, Bona
    Yun, Young Soo
    Jin, Hyoung-Joon
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (12) : 7950 - 7954
  • [2] A graphene/nitrogen-doped carbon nanofiber composite as an anode material for sodium-ion batteries
    Zhang, Juan
    Zhang, Zhian
    Zhao, Xingxing
    RSC ADVANCES, 2015, 5 (127): : 104822 - 104828
  • [3] Simple fabrication of free-standing ZnO/graphene/carbon nanotube composite anode for lithium-ion batteries
    Zhang, Yongguang
    Wei, Yaqiong
    Li, Haipeng
    Zhao, Yan
    Yin, Fuxing
    Wang, Xin
    MATERIALS LETTERS, 2016, 184 : 235 - 238
  • [4] Nitrogen-doped carbon paper with 3D porous structure as a flexible free-standing anode for lithium-ion batteries
    Zhang, Hua
    Yang, Juntan
    Hou, Haoqing
    Chen, Shuiliang
    Yao, Haimin
    SCIENTIFIC REPORTS, 2017, 7
  • [5] Nitrogen-doped carbon paper with 3D porous structure as a flexible free-standing anode for lithium-ion batteries
    Hua Zhang
    Juntan Yang
    Haoqing Hou
    Shuiliang Chen
    Haimin Yao
    Scientific Reports, 7
  • [6] Nitrogen-Doped Carbon Nanoparticles by Flame Synthesis as Anode Material for Rechargeable Lithium-Ion Batteries
    Bhattacharjya, Dhrubajyoti
    Park, Hyean-Yeol
    Kim, Min-Sik
    Choi, Hyuck-Soo
    Inamdar, Shaukatali N.
    Yu, Jong-Sung
    LANGMUIR, 2014, 30 (01) : 318 - 324
  • [7] Synthesis and Properties of Nitrogen-Doped Graphene as Anode Materials for Lithium-Ion Batteries
    Fu, Changjing
    Song, Chunlai
    Liu, Lilai
    Xie, Xuedong
    Zhao, Weiling
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (05): : 3876 - 3886
  • [8] L-Cysteine-Assisted Synthesis of Cubic Pyrite/Nitrogen-Doped Graphene Composite as Anode Material for Lithium-ion Batteries
    Qiu, Wenda
    Xia, Jian
    Zhong, Haimin
    He, Shenxian
    Lai, Shuhui
    Chen, Liuping
    ELECTROCHIMICA ACTA, 2014, 137 : 197 - 205
  • [9] Free-standing nitrogen-doped graphene paper for lithium storage application
    Wen, Hao
    Guo, Binbin
    Kang, Wenbin
    Zhang, Chuhong
    RSC ADVANCES, 2018, 8 (25) : 14032 - 14039
  • [10] Free-standing molybdenum disulfide/graphene composite paper as a binder- and carbon-free anode for lithium-ion batteries
    Yang, MinHo
    Ko, Seunghyun
    Im, Ji Sun
    Choi, Bong Gill
    JOURNAL OF POWER SOURCES, 2015, 288 : 76 - 81