Discrete modulational instability and bright localized spin wave modes in easy-axis weak ferromagnetic spin chains involving the next-nearest-neighbor coupling

被引:24
作者
Xie, Jiayu [1 ]
Deng, Zhihao [1 ]
Chang, Xia [1 ]
Tang, Bing [1 ,2 ]
机构
[1] Jishou Univ, Coll Phys Mech & Elect Engn, Jishou 416000, Peoples R China
[2] Jishou Univ, Collaborat Innovat Ctr Manganese Zinc Vanadium In, Jishou 416000, Peoples R China
基金
中国国家自然科学基金;
关键词
modulational instability analysis; intrinsic localized spin-wave modes; weak ferromagnets; next-nearest-neighbor couplings; NONLINEAR SCHRODINGER-EQUATION; ENERGY LOCALIZATION; BREATHER MODES; EXCITATIONS; SOLITONS; LATTICE;
D O I
10.1088/1674-1056/28/7/077501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report a theoretical work on the properties of modulational instability and bright type nonlinear localized modes in one-dimensional easy-axis weak ferromagnetic spin lattices involving next-nearest-neighbor couplings. With a linear stability analysis, we calculate the growth rates of the modulational instability, and plot the instability regions. When the strength of the next-nearest-neighbor coupling is large enough, two new asymmetric modulational instability regions appear near the boundary of the first Brillouin zone. Furthermore, analytical forms of the bright nonlinear localized modes are constructed by means of a quasi-discreteness approach. The influence of the next-nearest-neighbor coupling on the Brillouin zone center mode and boundary mode are discussed. In particular, we discover a reversal phenomenon of the propagation direction of the Brillouin zone boundary mode.
引用
收藏
页数:10
相关论文
共 70 条
[1]   Modulational instability and discrete breathers in the discrete cubic-quintic nonlinear Schrodinger equation [J].
Abdullaev, F. Kh. ;
Bouketir, A. ;
Messikh, A. ;
Umarov, B. A. .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 232 (01) :54-61
[2]  
Ablowitz M.J., 1985, SOLITONS INVERSE SCA
[3]   Baseband modulation instability as the origin of rogue waves [J].
Baronio, Fabio ;
Chen, Shihua ;
Grelu, Philippe ;
Wabnitz, Stefan ;
Conforti, Matteo .
PHYSICAL REVIEW A, 2015, 91 (03)
[4]   Vector Rogue Waves and Baseband Modulation Instability in the Defocusing Regime [J].
Baronio, Fabio ;
Conforti, Matteo ;
Degasperis, Antonio ;
Lombardo, Sara ;
Onorato, Miguel ;
Wabnitz, Stefan .
PHYSICAL REVIEW LETTERS, 2014, 113 (03)
[5]   Creation of unidirectional spin-wave emitters by utilizing interfacial Dzyaloshinskii-Moriya interaction [J].
Bracher, T. ;
Boulle, O. ;
Gaudin, G. ;
Pirro, P. .
PHYSICAL REVIEW B, 2017, 95 (06)
[6]   Nonautonomous multi-peak solitons and modulation instability for a variable-coefficient nonlinear Schrodinger equation with higher-order effects [J].
Cai, Liu-Ying ;
Wang, Xin ;
Wang, Lei ;
Li, Min ;
Liu, Yong ;
Shi, Yu-Ying .
NONLINEAR DYNAMICS, 2017, 90 (03) :2221-2230
[7]   Spontaneous soliton formation and modulational instability in Bose-Einstein condensates [J].
Carr, LD ;
Brand, J .
PHYSICAL REVIEW LETTERS, 2004, 92 (04) :4
[8]   Nuclear-Magnetic-Resonance Properties of the Staircase Kagome Antiferromagnet PbCu3TeO7 [J].
Dai Jia ;
Wang Peng-Shuai ;
Sun Shan-Shan ;
Pang Fei ;
Zhang Jin-Shan ;
Dong Xiao-Li ;
Yue Gen ;
Jin Kui ;
Cong Jun-Zhuang ;
Sun Yang ;
Yu Wei-Qiang .
CHINESE PHYSICS LETTERS, 2015, 32 (12)
[9]   Modulational instability: First step towards energy localization in nonlinear lattices [J].
Daumont, I ;
Dauxois, T ;
Peyrard, M .
NONLINEARITY, 1997, 10 (03) :617-630
[10]   Modulational instability in isolated and driven Fermi-Pasta-Ulam lattices [J].
Dauxois, T. ;
Khomeriki, R. ;
Ruffo, S. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2007, 147 (1) :3-23