Probing stop pair production at the LHC with graph neural networks

被引:51
作者
Abdughani, Murat [1 ,2 ,3 ,4 ]
Ren, Jie [3 ,4 ]
Wu, Lei [1 ,2 ]
Yang, Jin Min [3 ,4 ,5 ]
机构
[1] Nanjing Normal Univ, Dept Phys, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Inst Theoret Phys, Nanjing 210023, Jiangsu, Peoples R China
[3] Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Phys, Beijing 100049, Peoples R China
[5] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan
基金
中国国家自然科学基金;
关键词
Supersymmetry Phenomenology; MEASURING MASSES; HADRON;
D O I
10.1007/JHEP08(2019)055
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Top-squarks (stops) play a crucial role for the naturalness of supersymmetry (SUSY). However, searching for the stops is a tough task at the LHC. To dig the stops out of the huge LHC data, various expert-constructed kinematic variables or cutting-edge analysis techniques have been invented. In this paper, we propose to represent collision events as event graphs and use the message passing neutral network (MPNN) to analyze the events. As a proof-of-concept, we use our method in the search of the stop pair production at the LHC, and find that our MPNN can efficiently discriminate the signal and back-ground events. In comparison with other machine learning methods (e.g. DNN), MPNN can enhance the mass reach of stop mass by several tens of GeV to over a hundred GeV.
引用
收藏
页数:14
相关论文
共 64 条
[1]   Search for supersymmetry in final states with charm jets and missing transverse momentum in 13 TeV pp collisions with the ATLAS detector [J].
Aaboud, M. ;
Aad, G. ;
Abbott, B. ;
Abdinov, O. ;
Abeloos, B. ;
Abidi, S. H. ;
AbouZeid, O. S. ;
Abraham, N. L. ;
Abramowicz, H. ;
Abreu, H. ;
Abulaiti, Y. ;
Acharya, B. S. ;
Adachi, S. ;
Adamczyk, L. ;
Adelman, J. ;
Adersberger, M. ;
Adye, T. ;
Affolder, A. A. ;
Afik, Y. ;
Agheorghiesei, C. ;
Aguilar-Saavedra, J. A. ;
Ahmadov, F. ;
Aielli, G. ;
Akatsuka, S. ;
Akesson, T. P. A. ;
Akilli, E. ;
Akimov, A. V. ;
Alberghi, G. L. ;
Albert, J. ;
Albicocco, P. ;
Verzini, M. J. Alconada ;
Alderweireldt, S. ;
Aleksa, M. ;
Aleksandrov, I. N. ;
Alexa, C. ;
Alexander, G. ;
Alexopoulos, T. ;
Alhroob, M. ;
Ali, B. ;
Alimonti, G. ;
Alison, J. ;
Alkire, S. P. ;
Allaire, C. ;
Allbrooke, B. M. M. ;
Allen, B. W. ;
Allport, P. P. ;
Aloisio, A. ;
Alonso, A. ;
Alonso, F. ;
Alpigiani, C. .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (09)
[2]  
Aad G, 2020, EUR PHYS J C, V80, DOI 10.1140/epjc/s10052-020-8102-8
[3]   One-loop SQCD corrections to the decay of top squarks to charm and neutralino in the generic MSSM [J].
Aebischer, Jason ;
Crivellin, Andreas ;
Greub, Christoph .
PHYSICAL REVIEW D, 2015, 91 (03)
[4]   Stop-neutralino coannihilation in the light of the LHC [J].
Ajaib, M. Adeel ;
Li, Tong ;
Shafi, Qaisar .
PHYSICAL REVIEW D, 2012, 85 (05)
[5]   The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations [J].
Alwall, J. ;
Frederix, R. ;
Frixione, S. ;
Hirschi, V. ;
Maltoni, F. ;
Mattelaer, O. ;
Shao, H. -S. ;
Stelzer, T. ;
Torrielli, P. ;
Zaro, M. .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (07)
[6]   Opening Up the Compressed Region of Top Squark Searches at 13 TeV LHC [J].
An, Haipeng ;
Wang, Lian-Tao .
PHYSICAL REVIEW LETTERS, 2015, 115 (18)
[7]  
[Anonymous], IEEE GEOSCI REMOTE S
[8]  
[Anonymous], 2018, JHEP
[9]  
ATLAS Collaboration, 2018, JHEP, V06, P108
[10]   Reach of the high-energy LHC for gluinos and top squarks in SUSY models with light Higgsinos [J].
Baer, Howard ;
Barger, Vernon ;
Gainer, James S. ;
Serce, Hasan ;
Tata, Xerxes .
PHYSICAL REVIEW D, 2017, 96 (11)