Existence of unique SRB-measures is typical for real unicritical polynomial families

被引:19
作者
Bruin, Henk [1 ]
Shen, Weixiao
Van Strien, Sebastian
机构
[1] Univ Surrey, Guildford GU2 7XH, Surrey, England
[2] Univ Sci & Technol China, Dept Math, Anhua 230026, Peoples R China
[3] Univ Warwick, Dept Math, Coventry CV4 7AL, W Midlands, England
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2006年 / 39卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/j.ansens.2006.02.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for a one-parameter family of unicritical polynomials {f(c)} with even critical order l >= 2, for almost all parameters c, f(c), admits a unique SRB-measure, being either absolutely continuous, or supported on the postcritical set. As a byproduct we prove that if f(c) has a Cantor attractor, then it is uniquely ergodic on its postcritical set. (c) 2006 Published by Elsevier Masson SAS.
引用
收藏
页码:381 / 414
页数:34
相关论文
共 36 条
[1]  
AHLFORS L, 1966, LECT QUASICONFORMA M
[2]   Statistical properties of unimodal maps: the quadratic family [J].
Avila, A ;
Moreira, CG .
ANNALS OF MATHEMATICS, 2005, 161 (02) :831-881
[3]   Regular or stochastic dynamics in real analytic families of unimodal maps [J].
Avila, A ;
Lyubich, M ;
de Melo, W .
INVENTIONES MATHEMATICAE, 2003, 154 (03) :451-550
[4]  
Birkhoff Garrett, 1957, T AM MATH SOC, V85, P219, DOI 10.2307/1992971
[5]  
BLOKH A, 1991, ANN SCI ECOLE NORM S, V24, P737
[6]   Wild Cantor attractors exist [J].
Bruin, H ;
Keller, G ;
Nowicki, T ;
vanStrien, S .
ANNALS OF MATHEMATICS, 1996, 143 (01) :97-130
[7]   Invariant measures exist without a growth condition [J].
Bruin, H ;
Shen, WX ;
van Strien, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 241 (2-3) :287-306
[8]   Decay of correlations in one-dimensional dynamics [J].
Bruin, H ;
Luzzatto, S ;
Van Strien, S .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2003, 36 (04) :621-646
[9]   Minimal Cantor systems and unimodal maps [J].
Bruin, H .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2003, 9 (3-4) :305-318
[10]   Topological conditions for the existence of absorbing Cantor sets [J].
Bruin, H .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (06) :2229-2263