Patients' EEG Data Analysis via Spectrogram Image with a Convolution Neural Network

被引:23
作者
Yuan, Longhao [1 ]
Cao, Jianting [1 ]
机构
[1] Saitama Inst Technol, Grad Sch Engn, Fusaiji 1690, Fukaya, Saitama 3690293, Japan
来源
INTELLIGENT DECISION TECHNOLOGIES 2017, KES-IDT 2017, PT I | 2018年 / 72卷
关键词
Deep learning; CNN; EEG; Spectrogram image; Brain death diagnosis; TIME-FREQUENCY ANALYSIS;
D O I
10.1007/978-3-319-59421-7_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electroencephalogram (EEG) recording is relatively safe for the patients who are in deep coma or quasi brain death, so it is often used to verify the diagnosis of brain death in clinical practice. The objective of this paper is to apply deep learning method to EEG signal analysis in order to confirm clinical brain death diagnosis. A novel approach using spectrogram images produced from EEG signals as the input dataset of Convolution Neural Network (CNN) is proposed in this paper. A deep CNN was trained to obtain the similarity degree of the patients' EEG signals with the clinical diagnosed symptoms. This method can evaluate the condition of the brain damage patients and can be a reliable reference of quasi brain death diagnosis.
引用
收藏
页码:13 / 21
页数:9
相关论文
共 20 条
[1]  
[Anonymous], INT C ALG LEARN
[2]  
[Anonymous], INT C KNOWL BAS INT
[3]  
Bengio Y., 2006, ADV NEURAL INFORM PR, V19
[4]   Learning Deep Architectures for AI [J].
Bengio, Yoshua .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01) :1-127
[5]  
Cao, 2008, SIGNAL PROCESSING TE, P275, DOI [10.1007/978-0-387-74367-7_15, DOI 10.1007/978-0-387-74367-7_15]
[6]   An empirical EEG analysis in brain death diagnosis for adults [J].
Chen, Zhe ;
Cao, Jianting ;
Cao, Yang ;
Zhang, Yue ;
Gu, Fanji ;
Zhu, Guoxian ;
Hong, Zhen ;
Wang, Bin ;
Cichocki, Andrzej .
COGNITIVE NEURODYNAMICS, 2008, 2 (03) :257-271
[7]   Individual time-dependent spectral boundaries for improved accuracy in time-frequency analysis of heart rate variability [J].
Goren, Y ;
Davrath, LR ;
Pinhas, I ;
Toledo, E ;
Akselrod, S .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (01) :35-42
[8]   A fast learning algorithm for deep belief nets [J].
Hinton, Geoffrey E. ;
Osindero, Simon ;
Teh, Yee-Whye .
NEURAL COMPUTATION, 2006, 18 (07) :1527-1554
[9]   Caffe: Convolutional Architecture for Fast Feature Embedding [J].
Jia, Yangqing ;
Shelhamer, Evan ;
Donahue, Jeff ;
Karayev, Sergey ;
Long, Jonathan ;
Girshick, Ross ;
Guadarrama, Sergio ;
Darrell, Trevor .
PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, :675-678
[10]  
Koelstra S, 2010, LECT NOTES ARTIF INT, V6334, P89, DOI 10.1007/978-3-642-15314-3_9