Machine-learning-accelerated discovery of single-atom catalysts based on bidirectional activation mechanism

被引:71
作者
Chen, Zhi Wen [1 ]
Lu, Zhuole [1 ]
Chen, Li Xin [1 ]
Jiang, Ming [1 ]
Chen, Dachang [1 ]
Singh, Chandra Veer [1 ,2 ]
机构
[1] Univ Toronto, Dept Mat Sci & Engn, 184 Coll St,Suite 140, Toronto, ON M5S 3E4, Canada
[2] Univ Toronto, Dept Mech & Ind Engn, 5 Kings Coll Rd, Toronto, ON M5S 3G8, Canada
来源
CHEM CATALYSIS | 2021年 / 1卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
NITROGEN-FIXATION; EFFICIENT ELECTROCATALYST; CO; REDUCTION; AMMONIA; CONVERSION; MONOLAYER; OXYGEN; OPPORTUNITIES; ADSORPTION;
D O I
10.1016/j.checat.2021.03.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single-atom catalysts (SACs) have provided new impetus to the field of catalysis because of their high activity, high selectivity, and theoretically full utilization of active atoms. However, the ambiguous activation mechanism prevents a clear understanding of the structure-activity relationship and results in a great challenge of rational design of SACs. Herein, by combining density functional theory (DFT) calculations with machine learning (ML), we explore 126 SACs to analyze and develop the structure-activity relationship for the electrocatalytic nitrogen reduction reaction (NRR). We first propose a bidirectional activation mechanism with a new descriptor for catalytic activity, which provides new insights for the rational design of SACs. More importantly, we establish a ML model for predicting the catalytic performance of NRR, validated by both DFT calculations and experimental works. The successful ML prediction in this work helps with the accelerated design and discovery of new catalysts by computational screening with high practical significance.
引用
收藏
页码:183 / 195
页数:13
相关论文
共 52 条
[1]   Catalytic conversion of nitrogen to ammonia by an iron model complex [J].
Anderson, John S. ;
Rittle, Jonathan ;
Peters, Jonas C. .
NATURE, 2013, 501 (7465) :84-+
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors [J].
Calle-Vallejo, Federico ;
Tymoczko, Jakub ;
Colic, Viktor ;
Vu, Quang Huy ;
Pohl, Marcus D. ;
Morgenstern, Karina ;
Loffreda, David ;
Sautet, Philippe ;
Schuhmann, Wolfgang ;
Bandarenka, Aliaksandr S. .
SCIENCE, 2015, 350 (6257) :185-189
[4]   Beyond fossil fuel-driven nitrogen transformations [J].
Chen, Jingguang G. ;
Crooks, Richard M. ;
Seefeldt, Lance C. ;
Bren, Kara L. ;
Bullock, R. Morris ;
Darensbourg, Marcetta Y. ;
Holland, Patrick L. ;
Hoffman, Brian ;
Janik, Michael J. ;
Jones, Anne K. ;
Kanatzidis, Mercouri G. ;
King, Paul ;
Lancaster, Kyle M. ;
Lymar, Sergei V. ;
Pfromm, Peter ;
Schneider, William F. ;
Schrock, Richard R. .
SCIENCE, 2018, 360 (6391)
[5]   Atomic (single, double, and triple atoms) catalysis: frontiers, opportunities, and challenges [J].
Chen, Z. W. ;
Chen, L. X. ;
Yang, C. C. ;
Jiang, Q. .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (08) :3492-3515
[6]   Single or Double: Which Is the Altar of Atomic Catalysts for Nitrogen Reduction Reaction? [J].
Chen, Zhi Wen ;
Yan, Jun-Min ;
Jiang, Qing .
SMALL METHODS, 2019, 3 (06)
[7]   The path towards sustainable energy [J].
Chu, Steven ;
Cui, Yi ;
Liu, Nian .
NATURE MATERIALS, 2017, 16 (01) :16-22
[8]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[9]   Nitrogen reduction reaction on small iron clusters supported by N-doped graphene: A theoretical study of the atomically precise active-site mechanism [J].
Cui, Chaonan ;
Zhang, Hongchao ;
Luo, Zhixun .
NANO RESEARCH, 2020, 13 (08) :2280-2288
[10]   Room-Temperature Methane Conversion by Graphene-Confined Single Iron Atoms [J].
Cui, Xiaoju ;
Li, Haobo ;
Wang, Yan ;
Hu, Yuanli ;
Hua, Lei ;
Li, Haiyang ;
Han, Xiuwen ;
Liu, Qingfei ;
Yang, Fan ;
He, Limin ;
Chen, Xiaoqi ;
Li, Qingyun ;
Xiao, Jianping ;
Deng, Dehui ;
Bao, Xinhe .
CHEM, 2018, 4 (08) :1902-1910