Kinetic Turbulence in Relativistic Plasma: From Thermal Bath to Nonthermal Continuum

被引:109
作者
Zhdankin, Vladimir [1 ,2 ]
Werner, Gregory R. [3 ]
Uzdensky, Dmitri A. [3 ,4 ]
Begelman, Mitchell C. [1 ,2 ,5 ]
机构
[1] Univ Colorado, JILA, 440 UCB, Boulder, CO 80309 USA
[2] NIST, 440 UCB, Boulder, CO 80309 USA
[3] Univ Colorado, Ctr Integrated Plasma Studies, Dept Phys, 390 UCB, Boulder, CO 80309 USA
[4] Inst Adv Study, Princeton, NJ 08540 USA
[5] Dept Astrophys & Planetary Sci, 391 UCB, Boulder, CO 80309 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
GAMMA-RAY FLARES; PARTICLE-ACCELERATION; INTERSTELLAR TURBULENCE; MAGNETIC RECONNECTION; SIMULATIONS; DISSIPATION; STATISTICS; SHOCKS; WAVES;
D O I
10.1103/PhysRevLett.118.055103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present results from particle-in-cell simulations of driven turbulence in magnetized, collisionless, and relativistic pair plasmas. We find that the fluctuations are consistent with the classical k(perpendicular to)(-5/3) magnetic energy spectrum at fluid scales and a steeper k(perpendicular to)(-4). spectrum at sub-Larmor scales, where k(perpendicular to) is the wave vector perpendicular to the mean field. We demonstrate the development of a nonthermal, power-law particle energy distribution f(E)similar to E-a, with an index a that decreases with increasing magnetization and increases with an increasing system size (relative to the characteristic Larmor radius). Our simulations indicate that turbulence can be a viable source of energetic particles in high-energy astrophysical systems, such as pulsar wind nebulae, if scalings asymptotically become insensitive to the system size.
引用
收藏
页数:6
相关论文
共 52 条
[11]   Flux-freezing breakdown in high-conductivity magnetohydrodynamic turbulence [J].
Eyink, Gregory ;
Vishniac, Ethan ;
Lalescu, Cristian ;
Aluie, Hussein ;
Kanov, Kalin ;
Buerger, Kai ;
Burns, Randal ;
Meneveau, Charles ;
Szalay, Alexander .
NATURE, 2013, 497 (7450) :466-469
[12]   Comparing the statistics of interstellar turbulence in simulations and observations Solenoidal versus compressive turbulence forcing [J].
Federrath, C. ;
Roman-Duval, J. ;
Klessen, R. S. ;
Schmidt, W. ;
Mac Low, M. -M. .
ASTRONOMY & ASTROPHYSICS, 2010, 512
[13]   On the universality of supersonic turbulence [J].
Federrath, Christoph .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 436 (02) :1245-1257
[14]   SPIN DEPENDENCE OF SLOW NEUTRON SCATTERING BY DEUTERONS [J].
FERMI, E ;
MARSHALL, L .
PHYSICAL REVIEW, 1949, 75 (04) :578-580
[15]   LINEAR WAVES IN RELATIVISTIC ANISOTROPIC MAGNETOHYDRODYNAMICS [J].
GEDALIN, M .
PHYSICAL REVIEW E, 1993, 47 (06) :4354-4357
[16]   TOWARD A THEORY OF INTERSTELLAR TURBULENCE .2. STRONG ALFVENIC TURBULENCE [J].
GOLDREICH, P ;
SRIDHAR, S .
ASTROPHYSICAL JOURNAL, 1995, 438 (02) :763-775
[17]   PARTICLE ACCELERATION AND PLASMA DYNAMICS DURING MAGNETIC RECONNECTION IN THE MAGNETICALLY DOMINATED REGIME [J].
Guo, Fan ;
Liu, Yi-Hsin ;
Daughton, William ;
Li, Hui .
ASTROPHYSICAL JOURNAL, 2015, 806 (02)
[18]   Formation of Hard Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection [J].
Guo, Fan ;
Li, Hui ;
Daughton, William ;
Liu, Yi-Hsin .
PHYSICAL REVIEW LETTERS, 2014, 113 (15)