CLASSICAL SOLUTIONS OF THE GENERALIZED CAMASSA-HOLM EQUATION

被引:0
作者
Holmes, John [1 ]
Thompson, Ryan C. [2 ]
机构
[1] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
[2] Univ North Georgia, Dept Math, Dahlonega, GA 30597 USA
关键词
SHALLOW-WATER EQUATION; WAVES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, well-posedness in C-1(R) (a.k.a. classical solutions) for a generalized Camassa-Holm. equation (g-kbCH) having (k+1)-degree nonlinearities is shown. This result holds for the Camassa-Holm, the Degasperis-Procesi and the Novikov equations, which improves upon earlier results in Sobolev and Besov spaces.
引用
收藏
页码:339 / 362
页数:24
相关论文
共 19 条
[2]   Global conservative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (02) :215-239
[3]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[4]  
Chen RM, 2013, MATH ANN, V357, P1245, DOI 10.1007/s00208-013-0939-9
[5]   Existence of permanent and breaking waves for a shallow water equation: A geometric approach [J].
Constantin, A .
ANNALES DE L INSTITUT FOURIER, 2000, 50 (02) :321-+
[6]   The Hydrodynamical Relevance of the Camassa-Holm and Degasperis-Procesi Equations [J].
Constantin, Adrian ;
Lannes, David .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 192 (01) :165-186
[7]  
Degasperis A., 1999, Symmetry and perturbation theory, P23
[8]   GROUPS OF DIFFEOMORPHISMS AND MOTION OF AN INCOMPRESSIBLE FLUID [J].
EBIN, DG ;
MARSDEN, J .
ANNALS OF MATHEMATICS, 1970, 92 (01) :102-&
[9]   SYMPLECTIC STRUCTURES, THEIR BACKLUND-TRANSFORMATIONS AND HEREDITARY SYMMETRIES [J].
FUCHSSTEINER, B ;
FOKAS, AS .
PHYSICA D, 1981, 4 (01) :47-66
[10]  
Grayshan K., 2013, Adv. Dyn. Syst. Appl, V8, P217