A NOTE ON THE SIMULATION OF THE GINIBRE POINT PROCESS

被引:27
作者
Decreusefond, Laurent [1 ]
Flint, Ian [1 ]
Vergne, Anais [1 ]
机构
[1] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France
关键词
Determinantal point process; Ginibre point process; point process simulation; FERMION;
D O I
10.1017/S002190020011304X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Ginibre point process (GPP) is one of the main examples of determinantal point processes on the complex plane. It is a recurring distribution of random matrix theory as well as a useful model in applied mathematics. In this paper we briefly overview the usual methods for the simulation of the GPP. Then we introduce a modified version of the GPP which constitutes a determinantal point process more suited for certain applications, and we detail its simulation. This modified GPP has the property of having a fixed number of points and having its support on a compact subset of the plane. See Decreusefond et al. (2013) for an extended version of this paper.
引用
收藏
页码:1003 / 1012
页数:10
相关论文
共 19 条
[1]  
Anderson G. W., 2010, CAMB STUD ADV MATH, V118
[2]   Determinantal Processes and Independence [J].
Ben Hough, J. ;
Krishnapur, Manjunath ;
Peres, Yuval ;
Virag, Balint .
PROBABILITY SURVEYS, 2006, 3 :206-229
[3]  
Bornemann F., 2011, PREPRINT
[4]  
Decreusefond L., 2013, PREPRINT
[5]   STATISTICAL ENSEMBLES OF COMPLEX QUATERNION AND REAL MATRICES [J].
GINIBRE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (03) :440-&
[6]   Generalized Vandermonde determinants [J].
Heineman, E. R. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1929, 31 (1-4) :464-476
[7]  
Hough J.B., 2009, U LECT SER, V51
[8]   Determinantal point process models and statistical inference [J].
Lavancier, Frederic ;
Moller, Jesper ;
Rubak, Ege .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (04) :853-877
[9]  
LECAER G, 1990, J PHYS A-MATH GEN, V23, P3279, DOI 10.1088/0305-4470/23/14/025
[10]   THE ADMINISTRATIVE DIVISIONS OF MAINLAND FRANCE AS 2D RANDOM CELLULAR STRUCTURES [J].
LECAER, G ;
DELANNAY, R .
JOURNAL DE PHYSIQUE I, 1993, 3 (08) :1777-1800