Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder

被引:136
作者
Mao, Aiqin [1 ,3 ]
Xiang, Hou-Zheng [1 ]
Zhang, Zhan-Guo [2 ]
Kuramoto, Koji [2 ]
Yu, Haiyun [1 ]
Ran, Songlin [3 ]
机构
[1] Anhui Univ Technol, Sch Mat Sci & Engn, Maxiang Rd, Maanshan 243002, Peoples R China
[2] Natl Inst Adv Ind Sci & Technol, 16-1 Onogawa, Tsukuba, Ibaraki 3058569, Japan
[3] Anhui Univ Technol, Minist Educ, Key Lab Met Emiss Reduct & Resources Recycling, 59 Hudong Rd, Maanshan 243002, Peoples R China
关键词
Solution combustion synthesis; High-entropy oxide; (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O; Nanocrystalline powder; Antiferromagnetism; SOLID-SOLUTION FORMATION; RARE-EARTH; TRANSITION; MICROSTRUCTURE; THERMODYNAMICS; DISTORTION; STRENGTH; STRAIN; ALLOYS;
D O I
10.1016/j.jmmm.2019.04.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A facile solution combustion synthesis method was successfully applied to synthesize single rock-salt structural (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide (HEO) nanocrystalline powder with chemical homogeneity. The XRD patterns with Rietveld refinement reveal the formation of single-phase rock-salt structure occurs only at the synthesis temperatures >= 1123 K, and the average nanocrystalline size is about 43 nm. Moreover, two series of experiments confirm the effect of configurational entropy on phase stabilization. Furthermore, the as-synthesized single-phase (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O nanocrystalline powder exhibits long-range antiferromagnetic behavior below Neel temperature (T-N = 106 K), which can be well understood by the super-exchange interactions in the rock-salt HEO. The powder also shows lower T-N due to the significant amount of nonmagnetic ions suppressing the antiferromagnetic order.
引用
收藏
页码:245 / 252
页数:8
相关论文
共 53 条
[1]   Phase stability and distortion in high-entropy oxides [J].
Anand, G. ;
Wynn, Alex P. ;
Handley, Christopher M. ;
Freeman, Colin L. .
ACTA MATERIALIA, 2018, 146 :119-125
[2]  
Anand S., 2017, [Modern Electronic Materials, Modern Electronic Materials], V3, P168, DOI 10.1016/j.moem.2017.10.001
[3]  
[Anonymous], ARXIV190200833
[4]   Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides [J].
Berardan, D. ;
Meena, A. K. ;
Franger, S. ;
Herrero, C. ;
Dragoe, N. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 704 :693-700
[5]   Room temperature lithium superionic conductivity in high entropy oxides [J].
Berardan, D. ;
Franger, S. ;
Meena, A. K. ;
Dragoe, N. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (24) :9536-9541
[6]   Colossal dielectric constant in high entropy oxides [J].
Berardan, David ;
Franger, Sylvain ;
Dragoe, Diana ;
Meena, Arun Kumar ;
Dragoe, Nita .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2016, 10 (04) :328-333
[7]   Synthesis and sintering of (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxides obtained by wet chemical methods [J].
Biesuz, Mattia ;
Spiridigliozzi, Luca ;
Dell'Agli, Gianfranco ;
Bortolotti, Mauro ;
Sglavo, Vincenzo M. .
JOURNAL OF MATERIALS SCIENCE, 2018, 53 (11) :8074-8085
[8]   Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings [J].
Braic, V. ;
Vladescu, Alina ;
Balaceanu, M. ;
Luculescu, C. R. ;
Braic, M. .
SURFACE & COATINGS TECHNOLOGY, 2012, 211 :117-121
[9]   THERMODYNAMICS OF SOLID-SOLUTION FORMATION IN NIO-CUO [J].
BULARZIK, J ;
DAVIES, PK ;
NAVROTSKY, A .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1986, 69 (06) :453-457
[10]   Size-strain analysis and elastic properties of CoFe2O4 nanoplatelets by hydrothermal method [J].
Chandekar, Kamlesh V. ;
Kant, K. Mohan .
JOURNAL OF MOLECULAR STRUCTURE, 2018, 1154 :418-427