Non-coding RNA regulation of synaptic plasticity and memory: Implications for aging

被引:42
作者
Earls, Laurie R. [1 ]
Westmoreland, Joby J. [1 ]
Zakharenko, Stanislav S. [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Dev Neurobiol, Memphis, TN 38105 USA
基金
美国国家卫生研究院;
关键词
Non-coding RNA; microRNA; Synaptic plasticity; Learning; Memory; Aging; LONG-TERM POTENTIATION; NATURAL ANTISENSE TRANSCRIPTS; CENTRAL-NERVOUS-SYSTEM; 22Q11 DELETION SYNDROME; ADULT-MOUSE FOREBRAIN; MICRORNA EXPRESSION; PIWI PROTEINS; IN-VIVO; SACCHAROMYCES-CEREVISIAE; TRANSLATIONAL CONTROL;
D O I
10.1016/j.arr.2014.03.004
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Advancing age is associated with the loss of cognitive ability and vulnerability to debilitating mental diseases. Although much is known about the development of cognitive processes in the brain, the study of the molecular mechanisms governing memory decline with aging is still in its infancy. Recently, it has become apparent that most of the human genome is transcribed into non-coding RNAs (ncRNAs) rather than protein-coding mRNAs. Multiple types of ncRNAs are enriched in the central nervous system, and this large group of molecules may regulate the molecular complexity of the brain, its neurons, and synapses. Here, we review the current knowledge on the role of ncRNAs in synaptic plasticity, learning, and memory in the broader context of the aging brain and associated memory loss. We also discuss future directions to study the role of ncRNAs in the aging process. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:34 / 42
页数:9
相关论文
共 112 条
[1]  
[Anonymous], MOL PSYCHIAT
[2]   Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration [J].
Araki, T ;
Sasaki, Y ;
Milbrandt, J .
SCIENCE, 2004, 305 (5686) :1010-1013
[3]   A Coordinated Local Translational Control Point at the Synapse Involving Relief from Silencing and MOV10 Degradation [J].
Banerjee, Sourav ;
Neveu, Pierre ;
Kosik, Kenneth S. .
NEURON, 2009, 64 (06) :871-884
[4]   piRNA biogenesis during adult spermatogenesis in mice is independent of the ping-pong mechanism [J].
Beyret, Ergin ;
Liu, Na ;
Lin, Haifan .
CELL RESEARCH, 2012, 22 (10) :1429-1439
[5]   Dissecting the Components of Long-Term Potentiation [J].
Blundon, Jay A. ;
Zakharenko, Stanislav S. .
NEUROSCIENTIST, 2008, 14 (06) :598-608
[6]   Potential adaptive function for altered long-term potentiation mechanisms in aging hippocampus [J].
Boric, Katica ;
Munoz, Pablo ;
Gallagher, Michela ;
Kirkwood, Alfredo .
JOURNAL OF NEUROSCIENCE, 2008, 28 (32) :8034-8039
[7]   Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses [J].
Cabili, Moran N. ;
Trapnell, Cole ;
Goff, Loyal ;
Koziol, Magdalena ;
Tazon-Vega, Barbara ;
Regev, Aviv ;
Rinn, John L. .
GENES & DEVELOPMENT, 2011, 25 (18) :1915-1927
[8]  
Cao XW, 2006, ANNU REV NEUROSCI, V29, P77, DOI 10.1146/annurev.neuro.29.051605.112839
[9]   CIRCULAR TRANSCRIPTS OF THE TESTIS-DETERMINING GENE SRY IN ADULT-MOUSE TESTIS [J].
CAPEL, B ;
SWAIN, A ;
NICOLIS, S ;
HACKER, A ;
WALTER, M ;
KOOPMAN, P ;
GOODFELLOW, P ;
LOVELLBADGE, R .
CELL, 1993, 73 (05) :1019-1030
[10]   The transcriptional landscape of the mammalian genome [J].
Carninci, P ;
Kasukawa, T ;
Katayama, S ;
Gough, J ;
Frith, MC ;
Maeda, N ;
Oyama, R ;
Ravasi, T ;
Lenhard, B ;
Wells, C ;
Kodzius, R ;
Shimokawa, K ;
Bajic, VB ;
Brenner, SE ;
Batalov, S ;
Forrest, ARR ;
Zavolan, M ;
Davis, MJ ;
Wilming, LG ;
Aidinis, V ;
Allen, JE ;
Ambesi-Impiombato, X ;
Apweiler, R ;
Aturaliya, RN ;
Bailey, TL ;
Bansal, M ;
Baxter, L ;
Beisel, KW ;
Bersano, T ;
Bono, H ;
Chalk, AM ;
Chiu, KP ;
Choudhary, V ;
Christoffels, A ;
Clutterbuck, DR ;
Crowe, ML ;
Dalla, E ;
Dalrymple, BP ;
de Bono, B ;
Della Gatta, G ;
di Bernardo, D ;
Down, T ;
Engstrom, P ;
Fagiolini, M ;
Faulkner, G ;
Fletcher, CF ;
Fukushima, T ;
Furuno, M ;
Futaki, S ;
Gariboldi, M .
SCIENCE, 2005, 309 (5740) :1559-1563