ROTATION OF GAUSSIAN PATHS ON WIENER SPACE WITH APPLICATIONS

被引:8
作者
Chang, Seung Jun [1 ]
Choi, Jae Gil [1 ]
机构
[1] Dankook Univ, Dept Math, Cheonan 330714, South Korea
关键词
Gaussian process; rotation theorem; generalized analytic Fourier-Feynman transform; multiple generalized analytic Fourier-Feynman transform; FOURIER-FEYNMAN TRANSFORMS; SCALE-INVARIANT MEASURABILITY; INTEGRAL-EQUATION; CONVOLUTION;
D O I
10.1215/17358787-2017-0057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we first develop the rotation theorem of the Gaussian paths on Wiener space. We next analyze the generalized analytic Fourier-Feynman transform. As an application of our rotation theorem, we represent the multiple generalized analytic Fourier-Feynman transform as a single generalized Fourier-Feynman transform.
引用
收藏
页码:651 / 672
页数:22
相关论文
共 24 条
[21]   A NOTE ON PALEY-WIENER-ZYGMUND STOCHASTIC INTEGRALS [J].
PARK, C ;
SKOUG, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (02) :591-601
[22]  
Park C., 1991, J. Integral Equations Appl., V3, P411, DOI DOI 10.1216/JIEA/1181075633
[23]  
Stein E. M., 1971, Introduction to Fourier analysis on Euclidean spaces, V32
[24]  
Yeh J., 1973, PURE APPL MATH, V13