ROTATION OF GAUSSIAN PATHS ON WIENER SPACE WITH APPLICATIONS

被引:8
作者
Chang, Seung Jun [1 ]
Choi, Jae Gil [1 ]
机构
[1] Dankook Univ, Dept Math, Cheonan 330714, South Korea
关键词
Gaussian process; rotation theorem; generalized analytic Fourier-Feynman transform; multiple generalized analytic Fourier-Feynman transform; FOURIER-FEYNMAN TRANSFORMS; SCALE-INVARIANT MEASURABILITY; INTEGRAL-EQUATION; CONVOLUTION;
D O I
10.1215/17358787-2017-0057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we first develop the rotation theorem of the Gaussian paths on Wiener space. We next analyze the generalized analytic Fourier-Feynman transform. As an application of our rotation theorem, we represent the multiple generalized analytic Fourier-Feynman transform as a single generalized Fourier-Feynman transform.
引用
收藏
页码:651 / 672
页数:22
相关论文
共 24 条
[1]   ROTATIONS IN THE PRODUCT OF 2 WIENER SPACES [J].
BEARMAN, JE .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 3 (01) :129-137
[2]  
CAMERON RH, 1968, J MATH MECH, V18, P517
[3]   OPERATOR VALUED YEH-WIENER INTEGRAL, AND A WIENER INTEGRAL-EQUATION [J].
CAMERON, RH ;
STORVICK, DA .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1976, 25 (03) :235-258
[4]  
Choi J. G., 2012, ISRN APPL MATH, V2012, P654
[5]  
Choi J. G., 2012, ISRN APPL MATH, V2012
[6]   The behavior of conditional Wiener integrals on product Wiener space [J].
Choi, Jae Gil ;
Skouge, David ;
Chang, Seung Jun .
MATHEMATISCHE NACHRICHTEN, 2013, 286 (11-12) :1114-1128
[7]   A MULTIPLE GENERALIZED FOURIER-FEYNMAN TRANSFORM VIA A ROTATION ON WIENER SPACE [J].
Choi, Jae Gil ;
Skoug, David ;
Chang, Seung Jun .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (07)
[8]  
CHUNG DM, 1993, MICH MATH J, V40, P377
[9]   SCALE-INVARIANT MEASURABILITY IN ABSTRACT WIENER-SPACES [J].
CHUNG, DM .
PACIFIC JOURNAL OF MATHEMATICS, 1987, 130 (01) :27-40
[10]   Convolution and Fourier-Feynman transforms [J].
Huffman, T ;
Park, C ;
Skoug, D .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (03) :827-841