Multifunctional Optical Thermometry Based on the Rare-Earth-Ions-Doped Up-/Down-Conversion Ba2TiGe2O8:Ln (Ln = Eu3+/Er3+/Ho3+/Yb3+) Phosphors

被引:92
作者
Hou, Bofei [1 ]
Jia, Mochen [1 ]
Li, Panpan [1 ]
Liu, Guofeng [1 ]
Sun, Zhen [1 ]
Fu, Zuoling [1 ]
机构
[1] Jilin Univ, Coherent Light & Atom & Mol Spect Lab, Key Lab Phys & Technol Adv Batteries, Coll Phys, Changchun 130012, Jilin, Peoples R China
基金
美国国家科学基金会;
关键词
ENERGY-TRANSFER; TEMPERATURE; LUMINESCENCE; RED; NANOPARTICLES; BLUE; EU3+; PHOTOLUMINESCENCE; REDUCTION; EFFICIENT;
D O I
10.1021/acs.inorgchem.9b00646
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The fabrication of a multifunctional sensor together with a widening temperature-sensing range is an essential challenge in optical thermometers especially for trivalent lanthanide-doped materials. Herein, we design a wide range, highly sensitive, and multifunctional thermometer by exploiting the emission spectrum of Eu3+ ions, and further detailed discussion has been made on the new temperature-sensing mechanism. The sensor can be operated between 358 and 548 K with a maximum relative sensitivity (S-r) of 0.93% at 358 K, which is higher than that of most temperature-sensing materials. A paramount superiority is that the calibration parameter can be directly calculated from the single Eu3+ emission spectrum, avoiding the demand of other calibrations, which realizes the coexistence of a simple structure and high precision. Furthermore, other up-conversion thermometers based on Er3+/Ho3+/Yb3+ co-doped Ba2TiGe2O8 (BTG) phosphors as well as the down-conversion thermometer based on Eu3+-doped Ba2TiGe2O8 (BTG:Eu3+) phosphor have been synthesized for comparison, and the results show that the novel thermometer (BTG:Eu3+) has a much higher sensitivity than that of the traditional thermometers (BTG:Er3+/Ho3+/Yb3+). In addition, the versatility of the phosphor (BTG:Eu3+) is simultaneously reflected in its applications to red phosphor for white-light emitting diodes (W-LEDs) and plant growth lamps. All of the results suggest that BTG:Eu3+ could be a good candidate with its highly sensitive S-r value for optical thermometry and as a safety sign in high-temperature environments.
引用
收藏
页码:7939 / 7946
页数:8
相关论文
共 47 条
[1]   Er3+-doped BaTiO3 nanocrystals for thermometry:: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor [J].
Alencar, MARC ;
Maciel, GS ;
de Araújo, CB ;
Patra, A .
APPLIED PHYSICS LETTERS, 2004, 84 (23) :4753-4755
[2]   Photoluminescent Thermometer Based on a Phase-Transition Lanthanide Silicate with Unusual Structural Disorder [J].
Ananias, Duarte ;
Almeida Paz, Filipe A. ;
Yufit, Dmitry S. ;
Carlos, Luis D. ;
Rocha, Joao .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (08) :3051-3058
[3]   Ratiometric Optical Thermometer Based on Dual Near-Infrared Emission in Cr3+-Doped Bismuth-Based Gallate Host [J].
Back, Michele ;
Trave, Enrico ;
Ueda, Jumpei ;
Tanabe, Setsuhisa .
CHEMISTRY OF MATERIALS, 2016, 28 (22) :8347-8356
[4]   Optical temperature sensing behavior of enhanced green upconversion emissions from Er-Mo:Yb2Ti2O7 nanophosphor [J].
Cao, B. S. ;
He, Y. Y. ;
Feng, Z. Q. ;
Li, Y. S. ;
Dong, B. .
SENSORS AND ACTUATORS B-CHEMICAL, 2011, 159 (01) :8-11
[5]   Highly Sensitive Dual-Phase Nanoglass-Ceramics Self-Calibrated Optical Thermometer [J].
Chen, Daqin ;
Wan, Zhongyi ;
Liu, Shen .
ANALYTICAL CHEMISTRY, 2016, 88 (07) :4099-4106
[6]   Impurity doping: a novel strategy for controllable synthesis of functional lanthanide nanomaterials [J].
Chen, Daqin ;
Wang, Yuansheng .
NANOSCALE, 2013, 5 (11) :4621-4637
[7]   ITO nanoparticles enhanced upconversion luminescence in Er3+/Yb3+-codoped silica glasses [J].
Chen, Ping ;
Hou, Shaodong ;
Yang, Yu ;
Chen, Zhangru ;
Yang, Luyun ;
Li, Jinyan ;
Dai, Nengli .
NANOSCALE, 2018, 10 (07) :3299-3306
[8]   Review of temperature measurement [J].
Childs, PRN ;
Greenwood, JR ;
Long, CA .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2000, 71 (08) :2959-2978
[9]   Thermoreflectance based thermal microscope [J].
Christofferson, J ;
Shakouri, A .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (02) :024903-1
[10]   A Luminescent Mixed-Lanthanide Metal-Organic Framework Thermometer [J].
Cui, Yuanjing ;
Xu, Hui ;
Yue, Yanfeng ;
Guo, Zhiyong ;
Yu, Jiancan ;
Chen, Zhenxia ;
Gao, Junkuo ;
Yang, Yu ;
Qian, Guodong ;
Chen, Banglin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (09) :3979-3982