Characteristics of the ultrahyperbolic differential equation governing pole density functions

被引:15
作者
Nikolayev, DI [1 ]
Schaeben, H
机构
[1] Joint Inst Nucl Res, Neutron Phys Lab, Dubna 141980, Russia
[2] Freiberg Univ Technol & Min, D-09596 Freiberg, Germany
关键词
D O I
10.1088/0266-5611/15/6/312
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we define a hyperspherical x-ray transform, characterize the range of this transform in terms of an ultrahyperbolic differential equation which is derived here without referring to spherical harmonics, and provide its general solution in terms of both its characteristics or spherical harmonics. These results will aid in the solution of actual problems of texture goniometry, i.e., the analysis of preferred crystallographic orientation in polycrystalline materials, particularly in the solution of the inverse tomographic problem of texture goniometry.
引用
收藏
页码:1603 / 1619
页数:17
相关论文
共 42 条
[32]  
Sansone G., 1959, ORTHOGONAL FUNCTIONS
[33]  
SAVELOVA TI, 1982, DOKL AKAD NAUK SSSR+, V266, P590
[34]   A NUMERICAL ALGORITHM FOR SOLVING THE CAUCHY CHARACTERISTIC PROBLEM FOR ULTRAHYPERBOLIC EQUATIONS [J].
SAVELOVA, TI .
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1990, 30 (01) :233-237
[35]  
SAVYOLOVA TI, 1994, MATER SCI FORUM, V157-, P419, DOI 10.4028/www.scientific.net/MSF.157-162.419
[36]  
SAVYOLOVA TI, 1993, COMMUNICATION
[37]   FUNCTIONS ON A SPHERE WITH VANISHING INTEGRALS OVER CERTAIN SUBSPHERES [J].
SCHNEIDER, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1969, 26 (02) :381-+
[38]  
SEELEY RT, 1996, AM MATH MON, V78, P115
[39]  
Szego G., 1939, Orthogonal Polynomials
[40]  
VILENKEN NJ, 1968, AM MATH SOC TRANSL, V22