Quantification and modeling of mechanical degradation in lithium-ion batteries based on nanoscale imaging

被引:138
作者
Mueller, Simon [1 ]
Pietsch, Patrick [1 ]
Brandt, Ben-Elias [1 ]
Baade, Paul [1 ]
De Andrade, Vincent [2 ]
De Carlo, Francesco [2 ]
Wood, Vanessa [1 ]
机构
[1] ETH, Dept Informat Technol & Elect Engn, CH-8092 Zurich, Switzerland
[2] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA
基金
欧洲研究理事会;
关键词
SOLID-ELECTROLYTE INTERPHASE; X-RAY TOMOGRAPHY; NEGATIVE ELECTRODES; CURRENT COLLECTORS; YOUNGS MODULUS; SILICON ANODES; CAPACITY FADE; PERFORMANCE; ENERGY; FRACTURE;
D O I
10.1038/s41467-018-04477-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Capacity fade in lithium-ion battery electrodes can result from a degradation mechanism in which the carbon black-binder network detaches from the active material. Here we present two approaches to visualize and quantify this detachment and use the experimental results to develop and validate a model that considers how the active particle size, the viscoelastic parameters of the composite electrode, the adhesion between the active particle and the carbon black-binder domain, and the solid electrolyte interphase growth rate impact detachment and capacity fade. Using carbon-silicon composite electrodes as a model system, we demonstrate X-ray nano-tomography and backscatter scanning electron microscopy with sufficient resolution and contrast to segment the pore space, active particles, and carbon black-binder domain and quantify delamination as a function of cycle number. The validated model is further used to discuss how detachment and capacity fade in high-capacity materials can be minimized through materials engineering.
引用
收藏
页数:8
相关论文
共 58 条
[1]  
[Anonymous], 1992, SCANNING ELECT MICRO
[2]   On the electrochemistry of an anode stack for all-solid-state 3D-integrated batteries [J].
Baggetto, L. ;
Oudenhoven, J. F. M. ;
van Dongen, T. ;
Klootwijk, J. H. ;
Mulder, M. ;
Niessen, R. A. H. ;
de Croon, M. H. J. M. ;
Notten, P. H. L. .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :402-410
[3]   Laser-preparation of geometrically optimised samples for X-ray nano-CT [J].
Bailey, J. J. ;
Heenan, T. M. M. ;
Finegan, D. P. ;
Lu, X. ;
Daemi, S. R. ;
Iacoviello, F. ;
Backeberg, N. R. ;
Taiwo, O. O. ;
Brett, D. J. L. ;
Atkinson, A. ;
Shearing, P. R. .
JOURNAL OF MICROSCOPY, 2017, 267 (03) :384-396
[4]   A Critical Review of Thermal Issues in Lithium-Ion Batteries [J].
Bandhauer, Todd M. ;
Garimella, Srinivas ;
Fuller, Thomas F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :R1-R25
[5]   QUANTITATIVE PHOTOGRAMMETRIC ANALYSIS AND QUALITATIVE STEREOSCOPIC ANALYSIS OF SEM IMAGES [J].
BOYDE, A .
JOURNAL OF MICROSCOPY, 1973, 98 (AUG) :452-+
[6]   Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes [J].
Chan, Candace K. ;
Ruffo, Riccardo ;
Hong, Seung Sae ;
Cui, Yi .
JOURNAL OF POWER SOURCES, 2009, 189 (02) :1132-1140
[7]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[8]   Mixed silicon-graphite composites as anode material for lithium ion batteries influence of preparation conditions on the properties of the material [J].
Dimov, N ;
Kugino, S ;
Yoshio, A .
JOURNAL OF POWER SOURCES, 2004, 136 (01) :108-114
[9]   Toward Silicon Anodes for Next-Generation Lithium Ion Batteries: A Comparative Performance Study of Various Polymer Binders and Silicon Nanopowders [J].
Erk, Christoph ;
Brezesinski, Torsten ;
Sommer, Heino ;
Schneider, Reinhard ;
Janek, Juergen .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (15) :7299-7307
[10]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262