Portfolio selection with parameter uncertainty under α maxmin mean-variance criterion

被引:4
|
作者
Yu, Xingying [1 ]
Shen, Yang [2 ]
Li, Xiang [3 ]
Fan, Kun [4 ]
机构
[1] London Sch Econ & Polit Sci, Dept Math, London WC2A 2AE, England
[2] Univ New South Wales, Sch Risk & Actuarial Studies, Sydney, NSW 2052, Australia
[3] York Univ, Dept Math & Stat, Toronto, ON M3P 1P3, Canada
[4] East China Normal Univ, Sch Stat, Key Lab Adv Theory & Applicat Stat & Data Sci MOE, Shanghai 200241, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Portfolio selection; Uncertainty; Ambiguity seeking; Ambiguity aversion; Quasi-efficient frontier; EXPECTED UTILITY; AMBIGUITY;
D O I
10.1016/j.orl.2020.08.008
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a mean-variance portfolio selection problem with uncertain model parameters. We formulate the mean-variance problem under the alpha maxmin criterion, in which the investor has mixed ambiguity aversion and ambiguity seeking attitudes and solves a convex combination of max-min and max-max optimization problems. By the Lagrangian method, we obtain the efficient portfolio and quasi-efficient frontier in closed form. We provide comparative statics of the quasi-efficient frontier to various parameters. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:720 / 724
页数:5
相关论文
共 50 条
  • [21] Portfolio diversification and model uncertainty: A robust dynamic mean-variance approach
    Pham, Huyen
    Wei, Xiaoli
    Zhou, Chao
    MATHEMATICAL FINANCE, 2022, 32 (01) : 349 - 404
  • [22] Mean-Variance Portfolio Selection with Dynamic Targets for Expected Terminal Wealth
    He, Xue Dong
    Jiang, Zhaoli
    MATHEMATICS OF OPERATIONS RESEARCH, 2022, 47 (01) : 587 - 615
  • [23] Continuous-time mean-variance portfolio selection with regime switching
    Zhou, XY
    Yin, G
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 383 - 388
  • [24] Mean-variance portfolio selection with 'at-risk' constraints and discrete distributions
    Alexander, Gordon J.
    Baptista, Alexandre M.
    Yan, Shu
    JOURNAL OF BANKING & FINANCE, 2007, 31 (12) : 3761 - 3781
  • [25] Possibilistic mean-variance models and efficient frontiers for portfolio selection problem
    Zhang, Wei-Guo
    Wang, Ying-Luo
    Chen, Zhi-Ping
    Nie, Zan-Kan
    INFORMATION SCIENCES, 2007, 177 (13) : 2787 - 2801
  • [26] Justifying Mean-Variance Portfolio Selection when Asset Returns Are Skewed
    Schuhmacher, Frank
    Kohrs, Hendrik
    Auer, Benjamin R.
    MANAGEMENT SCIENCE, 2021, 67 (12) : 7812 - 7824
  • [27] A characterization of optimal portfolios under the tail mean-variance criterion
    Owadally, Iqbal
    Landsman, Zinoviy
    INSURANCE MATHEMATICS & ECONOMICS, 2013, 52 (02) : 213 - 221
  • [28] Optimal hedging with basis risk under mean-variance criterion
    Zhang, Jingong
    Tan, Ken Seng
    Weng, Chengguo
    INSURANCE MATHEMATICS & ECONOMICS, 2017, 75 : 1 - 15
  • [29] Alpha as Ambiguity: Robust Mean-Variance Portfolio Analysis
    Maccheroni, Fabio
    Marinacci, Massimo
    Ruffino, Doriana
    ECONOMETRICA, 2013, 81 (03) : 1075 - 1113
  • [30] Portfolio management with background risk under uncertain mean-variance utility
    Xiaoxia Huang
    Guowei Jiang
    Fuzzy Optimization and Decision Making, 2021, 20 : 315 - 330