Asymptotic behavior of global smooth solutions to the full 1D hydrodynamic model for semiconductors

被引:23
作者
Hsiao, L [1 ]
Wang, S [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
基金
中国博士后科学基金;
关键词
full hydrodynamic model; semiconductors; asymptotic behavior; global smooth solutions;
D O I
10.1142/S0218202502001891
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the asymptotic behavior of smooth solutions to the initial boundary value problem for the full one-dimensional hydrodynamic model for semiconductors. We prove that the solution to the problem converges to the unique stationary solution time asymptotically exponentially fast.
引用
收藏
页码:777 / 796
页数:20
相关论文
共 24 条
[1]   Global existence and relaxation limit for smooth solutions to the Euler-Poisson model for semiconductors [J].
Alì, G ;
Bini, D ;
Rionero, S .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 32 (03) :572-587
[2]  
BLATT FJ, 1968, PHYSICS ELECT CONDUC
[3]  
Chen GQ, 1998, NUMER MATH SCI COMP, P189
[4]   GLOBAL-SOLUTIONS TO THE ISOTHERMAL EULER-POISSON PLASMA MODEL [J].
CORDIER, S .
APPLIED MATHEMATICS LETTERS, 1995, 8 (01) :19-24
[5]  
Cordier S, 1998, RAIRO-MATH MODEL NUM, V32, P1
[6]  
Degond P., 1990, APPL MATH LETT, V3, P25, DOI DOI 10.1016/0893-9659(90)90130-4
[7]  
DEGOND P, 1993, ANN MAT PUR APPL, V4, P87
[8]  
GAMBA IM, 1992, COMMUN PART DIFF EQ, V17, P553
[9]   The energy transport and the drift diffusion equations as relaxation limits of the hydrodynamic model for semiconductors [J].
Gasser, I ;
Natalini, R .
QUARTERLY OF APPLIED MATHEMATICS, 1999, 57 (02) :269-282
[10]   Nonlinear diffusive phenomena of solutions for the system of compressible adiabatic flow through porous media [J].
Hsiao, L ;
Luo, T .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 125 (02) :329-365