Assumptions and approximations in the modeling of bipedal walking using the model of inverted pendulum

被引:0
作者
Ciontos, Ovidiu [1 ]
Dolga, Valer [1 ]
Vancu, Alexandru-Emil [1 ]
机构
[1] Politehn Univ Timisoara, Fac Mech Engn, Dept Mechatron, Timisoara, Romania
来源
PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON OPTIMIZATION OF THE ROBOTS AND MANIPULATORS, 2010 | 2010年
关键词
bipedal walking; inverted pendulum; biomechanics;
D O I
10.3850/978-981-08-5840-7_S8-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper is taldng issues of biomechanical modeling structure based on inverted pendulum in consideration. It is structured in 4 parts. In the first part Introduction, handles the actual status and views on the subject in the specialized literature. The second part Analysis of bipedal walking highlights essential aspects to be considered for modeling of bipedal walking. The third part the model of inverted pendulum in biomechanics, is presenting the mathematical form of the model. The last part Conclusions and perspectives, emphasizes the views of the authors on the problem addressed, and directions for future research. This paper approaches one of the possibilities considered in the specialized literature for the biomechanical structures, namely inverted pendulum.
引用
收藏
页码:218 / 222
页数:5
相关论文
共 15 条
[1]  
Ames A. D., 2007, AM CONTR C
[2]   The mechanical effectiveness of erect and "bent-hip, bent-knee" bipedal walking in Australopithecus afarensis [J].
Crompton, RH ;
Li, Y ;
Wang, WJ ;
Gunther, M ;
Savage, R .
JOURNAL OF HUMAN EVOLUTION, 1998, 35 (01) :55-74
[3]  
Eirich M., 2 DIMENSIONAL INVERT
[4]  
Iida F., J BIOMECHANICS, V41, P656
[5]   Some formulas for Lyapunov exponents and rotation numbers in two dimensions and the stability of the harmonic oscillator and the inverted pendulum [J].
Imkeller, P ;
Lederer, C .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2001, 16 (01) :29-61
[6]  
Jeong S., 2008, INTELLIGENT SERVICE
[7]  
Kajita S., 2002, INT C ROB AUT
[8]  
Koopman B, J BIOMECHANICS, V28, P1369
[9]   PASSIVE DYNAMIC WALKING [J].
MCGEER, T .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1990, 9 (02) :62-82
[10]   Dynamically stabilized bright solitons in a two-dimensional Bose-Einstein condensate [J].
Saito, H ;
Ueda, M .
PHYSICAL REVIEW LETTERS, 2003, 90 (04) :4