On the existence of harmonic morphisms from certain symmetric spaces

被引:3
作者
Gudmundsson, Sigmundur
Svensson, Martin
机构
[1] Lund Univ, Fac Sci, S-22100 Lund, Sweden
[2] Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England
关键词
harmonic morphisms; minimal submanifolds; symmetric spaces;
D O I
10.1016/j.geomphys.2006.03.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give a positive answer to the open existence problem for complex-valued harmonic morphisms from the non-compact irreducible Riemannian symmetric spaces SLn (R)/SO(n), SU*(2n)/Sp(n) and their compact duals SU(n)/SO(n) and SU(2n)/Sp(n). Furthermore we prove the existence of globally defined, complex-valued harmonic morphisms from any Riemannian symmetric space of type IV. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:353 / 366
页数:14
相关论文
共 14 条
  • [1] [Anonymous], 1978, Ann. Inst. Fourier., (Grenoble), DOI DOI 10.5802/AIF.691
  • [2] [Anonymous], 2003, London Mathematical Society Monographs. New Series
  • [3] BAIRD P, 1992, P LOND MATH SOC, V64, P170
  • [4] Fuglede B, 1996, ANN ACAD SCI FENN-M, V21, P31
  • [5] On the existence of harmonic morphisms from symmetric spaces of rank one
    Gudmundsson, S
    [J]. MANUSCRIPTA MATHEMATICA, 1997, 93 (04) : 421 - 433
  • [6] GUDMUNDSSON S, IN PRESS DIFFER GEOM
  • [7] GUDMUNDSSON S, IN PRESS ANN GLOBAL
  • [8] Ishihara T., 1979, J MATH KYOTO U, V19, P215
  • [9] KNAPP AW, 2002, LIE GROUPS BEYOND IN
  • [10] ONeill B, 1983, PURE APPL MATH