Eigenvalue estimates of the p-Laplacian on finite graphs

被引:4
作者
Wang, Yu-Zhao [1 ]
Huang, Huimin [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Eigenvalue estimates; Discrete p-Laplacian; Graphs;
D O I
10.1016/j.difgeo.2020.101697
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the eigenvalue of p-Laplacian on finite graphs. Under generalized curvature dimensional condition, we obtain a lower bound of the first nonzero eigenvalue of p-Laplacian. Moreover, a upper bound of the largest p-Laplacian eigenvalue is derived. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 14 条
[1]   Bounds for the largest p-Laplacian eigenvalue for graphs [J].
Amghibech, S. .
DISCRETE MATHEMATICS, 2006, 306 (21) :2762-2771
[2]  
Bakry D., 2014, Fundamental Principles of Mathematical Sciences, V348
[3]   CURVATURE ASPECTS OF GRAPHS [J].
Bauer, F. ;
Chung, F. ;
Lin, Y. ;
Liu, Y. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (05) :2033-2042
[4]  
Chung F. R. K., 1997, Spectral Graph Theory
[5]   Dirichlet p-Laplacian eigenvalues and Cheeger constants on symmetric graphs [J].
Hua, Bobo ;
Wang, Lili .
ADVANCES IN MATHEMATICS, 2020, 364
[6]  
K Chung FR., 1994, Communications on Analysis and Geometry, V2, P628, DOI DOI 10.4310/CAG.1994.V2.N4.A6
[7]  
Kotschwar B, 2009, ANN SCI ECOLE NORM S, V42, P1
[8]  
Lin Y, 2010, MATH RES LETT, V17, P343, DOI 10.4310/MRL.2010.v17.n2.a13
[9]  
Naber A, 2014, MATH Z, V277, P867, DOI 10.1007/s00209-014-1282-x
[10]  
Schoen R., 1994, LECT DIFFERENTIAL GE