LOCAL AND NONLOCAL ENERGY-BASED COUPLING MODELS

被引:1
|
作者
Acosta, Gabriel [1 ,2 ]
Bersetche, Francisco [1 ]
Rossi, Julio D. [1 ]
机构
[1] Univ Buenos Aires, Dept Matemat, FCEyN, Pabellon 1,Ciudad Universitaria, RA-1428 Buenos Aires, Argentina
[2] Consejo Nacl Invest Cient & Tecn, IMAS, Buenos Aires, Argentina
关键词
local equations; nonlocal equations; couplings; elasticity; BOUNDARY-CONDITIONS; DIFFUSION; TRANSITIONS; STABILITY; EQUATION; VOLUME;
D O I
10.1137/21M1431977
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study two different ways of coupling a local operator with a nonlocal one so that the resulting equation is related to an energy functional. In the first strategy the coupling is given via source terms in the equation, and in the second one a flux condition in the local part appears. For both models we prove existence and uniqueness of a solution that is obtained via direct minimization of the related energy functional. In the second part of this paper we extend these ideas to local/nonlocal elasticity models in which we couple classical local elasticity with nonlocal peridynamics.
引用
收藏
页码:6288 / 6322
页数:35
相关论文
共 50 条
  • [1] An energy-based coupling approach to nonlocal interface problems
    Capodaglio, Giacomo
    D'Elia, Marta
    Bochev, Pavel
    Gunzburger, Max
    COMPUTERS & FLUIDS, 2020, 207
  • [2] The physics of energy-based models
    Huembeli, Patrick
    Arrazola, Juan Miguel
    Killoran, Nathan
    Mohseni, Masoud
    Wittek, Peter
    QUANTUM MACHINE INTELLIGENCE, 2022, 4 (01)
  • [3] Conjugate Energy-Based Models
    Wu, Hao
    Esmaeili, Babak
    Wick, Michael
    Tristan, Jean-Baptiste
    van de Meent, Jan-Willem
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [4] The physics of energy-based models
    Patrick Huembeli
    Juan Miguel Arrazola
    Nathan Killoran
    Masoud Mohseni
    Peter Wittek
    Quantum Machine Intelligence, 2022, 4
  • [5] A QUASI-NONLOCAL COUPLING METHOD FOR NONLOCAL AND LOCAL DIFFUSION MODELS
    Du, Qiang
    Li, Xingjie Helen
    Lu, Jianfeng
    Tian, Xiaochuan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (03) : 1386 - 1404
  • [6] Coupling of nonlocal and local continuum models by the Arlequin approach
    Han, Fei
    Lubineau, Gilles
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 89 (06) : 671 - 685
  • [7] NONLOCAL MODELS WITH HETEROGENEOUS LOCALIZATION AND THEIR APPLICATION TO SEAMLESS LOCAL-NONLOCAL COUPLING
    Tao, Yunzhe
    Tian, Xiaochuan
    Du, Qiang
    MULTISCALE MODELING & SIMULATION, 2019, 17 (03): : 1052 - 1075
  • [8] Deep Energy-Based NARX Models
    Hendriks, Johannes N.
    Gustafsson, Fredrik K.
    Ribeiro, Antonio H.
    Wills, Adrian G.
    Schon, Thomas B.
    IFAC PAPERSONLINE, 2021, 54 (07): : 505 - 510
  • [9] Energy-based models for environmental biotechnology
    Rodriguez, Jorge
    Lema, Juan M.
    Kleerebezem, Robbert
    TRENDS IN BIOTECHNOLOGY, 2008, 26 (07) : 366 - 374
  • [10] Energy-Based Models of P Systems
    Mauri, Giancarlo
    Leporati, Alberto
    Zandron, Claudio
    MEMBRANE COMPUTING, 2010, 5957 : 104 - 124