RANDOM AVERAGING IN ERGODIC THEOREM AND BOUNDARY DEFORMATION RATE IN SYMBOLIC DYNAMICS

被引:0
作者
Gurevich, B. M. [1 ]
Komech, S. A. [2 ]
Tempelman, A. A. [3 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Mech & Math, GSP 1, Moscow 119991, Russia
[2] IITP RAS, Bolshoy Karetny 19,Build 1,Lab 4, Moscow 127051, Russia
[3] Penn State Univ, University Pk, PA 16802 USA
关键词
Symbolic dynamical systems; topological Markov shift; sofic system; synchronized system; magic word; invariant measure; metric entropy; Mean Ergodic theorem; boundary deformation rate;
D O I
10.17323/1609-4514-2019-19-1-77-88
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For some symbolic dynamical systems we study the value of the boundary deformation for a small ball in the phase space during a period of time depending on the center and radius of the ball. For actions of countable Abelian groups, a version of the Mean Ergodic theorem with averaging over random sets is proved and used in the proof of the main theorem on deformation rate.
引用
收藏
页码:77 / 88
页数:12
相关论文
共 8 条
[1]   Deformation Rate of Boundaries in Anosov and Related Systems [J].
Gurevich, B. M. ;
Komech, S. A. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 297 (01) :188-199
[2]   Entropy, Lyapunov exponents and the boundary deformation rate under the action of hyperbolic dynamical systems [J].
Gurevich, B. M. ;
Komech, S. A. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2016, 22 (01) :140-146
[3]  
Gurevich BM., 1996, SINAIS MOSCOW SEMINA, P81
[4]   Boundary distortion rate in synchronized systems: Geometrical meaning of entropy [J].
Komech, S. A. .
PROBLEMS OF INFORMATION TRANSMISSION, 2012, 48 (01) :11-20
[5]  
Lusternik L. A., 1974, INT MONOGRAPHS ADV M
[6]  
TEMPELMAN A., 1992, MATH APPL, V78
[7]  
Zaslavsky G. M., 2008, HAMILTONIAN CHAOS FR
[8]  
Zaslavsky G. M., 1984, STOCHASTICITY DYNAMI