Group classification of dynamics equations of self-gravitating gas

被引:0
作者
Adarchenko, V. A. [1 ]
Panov, A., V [2 ,5 ]
Voronin, S. M. [2 ]
Klebanov, I. I. [3 ,4 ]
机构
[1] Academician EI Zababakhin All Russian Res Inst Te, Russian Fed Nucl Ctr, Snezhinsk 456770, Chelyabinsk Reg, Russia
[2] Chelyabinsk State Univ, Dept Math, Chelyabinsk 454001, Russia
[3] South Ural State Univ, Sch Elect Engn & Comp Sci, Chelyabinsk 454080, Russia
[4] South Ural State Humanitarian Pedag Univ, Dept Phys & Math, Chelyabinsk 454080, Russia
[5] South Ural State Univ, Inst Nat Sci & Math, Chelyabinsk 454080, Russia
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2019年 / 77卷
关键词
Self-gravitating gas; Group classification; Equivalence transformations; Admitted group;
D O I
10.1016/j.cnsns.2019.04.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, a group classification problem is solved for a system of equations which describes motion of self-gravitating gas. A parameter in group classification problem is a function which is determined by an equation of state. A kernel of Lie algebras admitted by the system and an algebra of equivalence transformations group are derived. All specifications of the parameter that lead to extensions of the kernel are found. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:18 / 24
页数:7
相关论文
共 9 条
[1]   Group classification and conservation laws of nonlinear filtration equation with a small parameter [J].
Alexandrova, A. A. ;
Ibragimov, N. H. ;
Lukashchuk, V. O. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (02) :364-370
[2]   Group analysis of dynamics equations of self-gravitating polytropic gas [J].
Klebanov, I. ;
Panov, A. ;
Ivanov, S. ;
Maslova, O. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 :437-443
[3]   Model of the Newtonian cosmology: Symmetries, invariant and partially invariant solutions [J].
Klebanov, I. ;
Startsun, O. ;
Ivanov, S. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 39 :248-251
[4]  
Klebanov I, 2015, INT J PURE APPL MATH, V105, P377
[5]  
Melenshko S. V., 1994, PMM-J APPL MATH MEC, V58, P629
[6]  
OVSYANNIKOV LV, 1994, PMM-J APPL MATH MEC+, V58, P601
[7]  
Ovsyannikov LV, 1982, GROUP ANAL DIFFERENT, P414
[8]  
Weinberg S., 2008, COSMOLOGY, P608
[9]  
Zeldovich YB, 1997, RELATIVISTIC ASTROPH, VI, P1971