Analysis of the track- and dose-averaged LET and LET spectra in proton therapy using the GEANT4 Monte Carlo code

被引:107
作者
Guan, Fada [1 ]
Peeler, Christopher [1 ]
Bronk, Lawrence [2 ]
Geng, Changran [3 ,4 ,5 ]
Taleei, Reza [1 ]
Randeniya, Sharmalee [1 ]
Ge, Shuaiping [1 ]
Mirkovic, Dragan [1 ]
Grosshans, David [2 ,6 ]
Mohan, Radhe [1 ]
Titt, Uwe [1 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Radiat Phys, Houston, TX 77030 USA
[2] Univ Texas MD Anderson Canc Ctr, Dept Expt Radiat Oncol, Houston, TX 77030 USA
[3] Nanjing Univ Aeronaut & Astronaut, Dept Nucl Sci & Engn, Nanjing 210016, Jiangsu, Peoples R China
[4] Massachusetts Gen Hosp, Dept Radiat Oncol, Boston, MA 02114 USA
[5] Harvard Univ, Sch Med, Boston, MA 02114 USA
[6] Univ Texas MD Anderson Canc Ctr, Dept Radiat Oncol, Houston, TX 77030 USA
关键词
GEANT4; Monte Carlo; proton therapy; LET; LET spectrum; step limit; RELATIVE BIOLOGICAL EFFECTIVENESS; LINEAR-ENERGY-TRANSFER; NUCLEOTIDE EXCISION-REPAIR; EFFECTIVENESS RBE VALUES; HEAVY-ION RADIOTHERAPY; DNA-DAMAGE SITES; BEAM; SIMULATION; MODEL; OPTIMIZATION;
D O I
10.1118/1.4932217
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: The motivation of this study was to find and eliminate the cause of errors in dose-averaged linear energy transfer (LET) calculations from therapeutic protons in small targets, such as biological cell layers, calculated using the GEANT4 Monte Carlo code. Furthermore, the purpose was also to provide a recommendation to select an appropriate LET quantity from GEANT4 simulations to correlate with biological effectiveness of therapeutic protons. Methods: The authors developed a particle tracking step based strategy to calculate the average LET quantities (track-averaged LET, LETt and dose-averaged LET, LETd) using GEANT4 for different tracking step size limits. A step size limit refers to the maximally allowable tracking step length. The authors investigated how the tracking step size limit influenced the calculated LETt and LETd of protons with six different step limits ranging from 1 to 500 mu m in a water phantom irradiated by a 79.7-MeV clinical proton beam. In addition, the authors analyzed the detailed stochastic energy deposition information including fluence spectra and dose spectra of the energy-deposition-per-step of protons. As a reference, the authors also calculated the averaged LET and analyzed the LET spectra combining the Monte Carlo method and the deterministic method. Relative biological effectiveness (RBE) calculations were performed to illustrate the impact of different LET calculation methods on the RBE-weighted dose. Results: Simulation results showed that the step limit effect was small for LETt but significant for LETd. This resulted from differences in the energy-deposition-per-step between the fluence spectra and dose spectra at different depths in the phantom. Using the Monte Carlo particle tracking method in GEANT4 can result in incorrect LETd calculation results in the dose plateau region for small step limits. The erroneous LETd results can be attributed to the algorithm to determine fluctuations in energy deposition along the tracking step in GEANT4. The incorrect LETd values lead to substantial differences in the calculated RBE. Conclusions: When the GEANT4 particle tracking method is used to calculate the average LET values within targets with a small step limit, such as smaller than 500 mu m, the authors recommend the use of LETt in the dose plateau region and LETd around the Bragg peak. For a large step limit, i.e., 500 mu m, LETd is recommended along the whole Bragg curve. The transition point depends on beam parameters and can be found by determining the location where the gradient of the ratio of LETd and LETt becomes positive. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
引用
收藏
页码:6234 / 6247
页数:14
相关论文
共 56 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]   Geant4 developments and applications [J].
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Dubois, PA ;
Asai, M ;
Barrand, G ;
Capra, R ;
Chauvie, S ;
Chytracek, R ;
Cirrone, GAP ;
Cooperman, G ;
Cosmo, G ;
Cuttone, G ;
Daquino, GG ;
Donszelmann, M ;
Dressel, M ;
Folger, G ;
Foppiano, F ;
Generowicz, J ;
Grichine, V ;
Guatelli, S ;
Gumplinger, P ;
Heikkinen, A ;
Hrivnacova, I ;
Howard, A ;
Incerti, S ;
Ivanchenko, V ;
Johnson, T ;
Jones, F ;
Koi, T ;
Kokoulin, R ;
Kossov, M ;
Kurashige, H ;
Lara, V ;
Larsson, S ;
Lei, F ;
Link, O ;
Longo, F ;
Maire, M ;
Mantero, A ;
Mascialino, B ;
McLaren, I ;
Lorenzo, PM ;
Minamimoto, K ;
Murakami, K ;
Nieminen, P ;
Pandola, L ;
Parlati, S ;
Peralta, L .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (01) :270-278
[3]  
Attix F.H., 1986, Introduction to radiological physics and radiation dosimetry
[4]  
Berger M. J., 2005, ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions
[5]  
Bethe H, 1932, Z PHYS, V76, P293, DOI 10.1007/BF01342532
[6]  
Bethe H, 1930, ANN PHYS-BERLIN, V5, P325
[7]   Variations in the RBE for Cell Killing Along the Depth-Dose Profile of a Modulated Proton Therapy Beam [J].
Britten, Richard. A. ;
Nazaryan, Vahagn ;
Davis, Leslie K. ;
Klein, Susan B. ;
Nichiporov, Dmitri ;
Mendonca, Marc S. ;
Wolanski, Mark ;
Nie, Xiliang ;
George, Jerry ;
Keppel, Cynthia .
RADIATION RESEARCH, 2013, 179 (01) :21-28
[8]   ROOT - An object oriented data analysis framework [J].
Brun, R ;
Rademakers, F .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1997, 389 (1-2) :81-86
[9]   RADIOBIOLOGICAL CHARACTERIZATION OF TWO THERAPEUTIC PROTON BEAMS WITH DIFFERENT INITIAL ENERGY SPECTRA USED AT THE INSTITUT CURIE PROTON THERAPY CENTER IN ORSAY [J].
Calugaru, Valentin ;
Nauraye, Catherine ;
Noel, Georges ;
Giocanti, Nicole ;
Favaudon, Vincent ;
Megnin-Chanet, Frederique .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2011, 81 (04) :1136-1143
[10]  
Carlson D. J., 2009, RADIAT RES, V169, P447