Bayesian hidden Markov models for dependent large-scale multiple testing

被引:11
作者
Wang, Xia [1 ]
Shojaie, Ali [2 ]
Zou, Jian [3 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
[2] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[3] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
基金
美国国家科学基金会;
关键词
Bayesian hierarchical model; Dirichlet mixture process prior; False discovery rate; Hidden Markov model; Multiple hypotheses testing; FALSE DISCOVERY RATE; INFERENCE; NUMBER;
D O I
10.1016/j.csda.2019.01.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An optimal and flexible multiple hypotheses testing procedure is constructed for dependent data based on Bayesian techniques, aiming at handling two challenges, namely dependence structure and non-null distribution specification. Ignoring dependence among hypotheses tests may lead to loss of efficiency and bias in decision. Misspecification in the non-null distribution, on the other hand, can result in both false positive and false negative errors. Hidden Markov models are used to accommodate the dependence structure among the tests. Dirichlet mixture process prior is applied on the non-null distribution to overcome the potential pitfalls in distribution misspecification. The testing algorithm based on Bayesian techniques optimizes the false negative rate (FNR) while controlling the false discovery rate (FDR). The procedure is applied to pointwise and clusterwise analysis. Its performance is compared with existing approaches using both simulated and real data examples. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:123 / 136
页数:14
相关论文
共 53 条
[1]   BAYESIAN-ANALYSIS OF BINARY AND POLYCHOTOMOUS RESPONSE DATA [J].
ALBERT, JH ;
CHIB, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (422) :669-679
[2]  
[Anonymous], MLSS
[3]  
[Anonymous], 1985, STAT ANAL FINITE MIX
[4]  
[Anonymous], J AM STAT ASS
[5]  
[Anonymous], 2006, Dept of Biostatistics Working Papers
[6]  
Benjamini Y, 2001, ANN STAT, V29, P1165
[7]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[8]   False discovery rates for spatial signals [J].
Benjamini, Ybav ;
Heller, Ruth .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (480) :1272-1281
[9]   Bayesian optimal discovery procedure for simultaneous significance testing [J].
Cao, Jing ;
Xie, Xian-Jin ;
Zhang, Song ;
Whitehurst, Angelique ;
White, Michael A. .
BMC BIOINFORMATICS, 2009, 10
[10]   EFFECTS OF STATISTICAL DEPENDENCE ON MULTIPLE TESTING UNDER A HIDDEN MARKOV MODEL [J].
Chi, Zhiyi .
ANNALS OF STATISTICS, 2011, 39 (01) :439-473