A C1 VIRTUAL ELEMENT METHOD FOR THE CAHN-HILLIARD EQUATION WITH POLYGONAL MESHES

被引:187
作者
Antonietti, P. F. [1 ]
Da Veiga, L. Beirao [2 ]
Scacchi, S. [3 ]
Verani, M. [1 ,4 ]
机构
[1] Politecn Milan, MOX Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 53, I-20125 Milan, Italy
[3] Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
[4] CNR, Ist Matemat Applicata & Tecnol Informat E Magenes, Via Ferrata 1, I-27100 Pavia, Italy
关键词
virtual element method; Cahn-Hilliard equation; FINITE-ELEMENTS; TUMOR-GROWTH; ERROR; MODEL; APPROXIMATION; FORMULATION; SEPARATION;
D O I
10.1137/15M1008117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we develop an evolution of the C-1 virtual elements of minimal degree for the approximation of the Cahn-Hilliard equation. The proposed method has the advantage of being conforming in H-2 and making use of a very simple set of degrees of freedom, namely, 3 degrees of freedom per vertex of the mesh. Moreover, although the present method is new also on triangles, it can make use of general polygonal meshes. As a theoretical and practical support, we prove the convergence of the semidiscrete scheme and investigate the performance of the fully discrete scheme through a set of numerical tests.
引用
收藏
页码:34 / 56
页数:23
相关论文
共 48 条
[1]  
Adams R., 2003, SOBOLEV SPACES
[2]   Equivalent projectors for virtual element methods [J].
Ahmad, B. ;
Alsaedi, A. ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) :376-391
[3]   A STREAM VIRTUAL ELEMENT FORMULATION OF THE STOKES PROBLEM ON POLYGONAL MESHES [J].
Antonietti, P. F. ;
da Veiga, L. Beirao ;
Mora, D. ;
Verani, M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (01) :386-404
[4]   The virtual element method for discrete fracture network simulations [J].
Benedetto, Matias Fernando ;
Berrone, Stefano ;
Pieraccini, Sandra ;
Scialo, Stefano .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 280 :135-156
[5]   Analysis of a two-scale Cahn-Hilliard model for binary image inpainting [J].
Bertozzi, Andrea ;
Esedoglu, Selim ;
Gillette, Alan .
MULTISCALE MODELING & SIMULATION, 2007, 6 (03) :913-936
[6]   A displacement-based finite element formulation for general polyhedra using harmonic shape functions [J].
Bishop, J. E. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 97 (01) :1-31
[7]   BASIC PRINCIPLES OF MIXED VIRTUAL ELEMENT METHODS [J].
Brezzi, F. ;
Falk, Richard S. ;
Marini, L. Donatella .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (04) :1227-1240
[8]   Virtual Element Methods for plate bending problems [J].
Brezzi, Franco ;
Marini, L. Donatella .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 253 :455-462
[9]   ON SPINODAL DECOMPOSITION [J].
CAHN, JW .
ACTA METALLURGICA, 1961, 9 (09) :795-801
[10]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267