MR Fingerprinting and ADC Mapping for Characterization of Lesions in the Transition Zone of the Prostate Gland

被引:69
作者
Panda, Ananya [1 ]
Obmann, Verena C. [2 ]
Lo, Wei-Ching [3 ]
Margevicius, Seunghee [4 ]
Jiang, Yun [5 ,6 ]
Schluchter, Mark [4 ]
Patel, Indravadan J. [7 ,8 ]
Nakamoto, Dean [8 ]
Badve, Chaitra [5 ,8 ]
Griswold, Mark A. [3 ,5 ,8 ]
Jaeger, Irina [9 ]
Ponsky, Lee E. [9 ]
Gulani, Vikas [5 ,6 ]
机构
[1] Mayo Clin, Dept Radiol, Rochester, MN USA
[2] Univ Bern, Bern Univ Hosp, Inselspital, Dept Diagnost Intervent & Pediat Radiol, Bern, Switzerland
[3] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA
[4] Case Western Reserve Univ, Dept Epidemiol & Biastat, Cleveland, OH 44106 USA
[5] Case Western Reserve Univ, Dept Radiol, Cleveland, OH 44106 USA
[6] Univ Michigan, Dept Radiol, UH B1 G503,1500 E Med Ctr Dr,SPC 5030, Ann Arbor, MI 48109 USA
[7] Mayo Clin, Dept Radiol, Phoenix, AZ USA
[8] Univ Hosp Cleveland, Dept Radiol, Med Ctr, 2074 Abington Rd, Cleveland, OH 44106 USA
[9] Univ Hosp Cleveland, Dept Urol, Med Ctr, Cleveland, OH 44106 USA
基金
美国国家卫生研究院;
关键词
LOGISTIC-REGRESSION MODEL; PI-RADS V2; CANCER DETECTION; HYPERPLASIA; DIAGNOSIS; DIFFERENTIATION; LOCALIZATION; VALIDATION; BIOPSY;
D O I
10.1148/radiol.2019181705
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Preliminary studies have shown that MR fingerprinting-based relaxometry combined with apparent diffusion coefficient (ADC) mapping can be used to differentiate normal peripheral zone from prostate cancer and prostatitis. The utility of relaxometry and ADC mapping for the transition zone (TZ) is unknown. Purpose: To evaluate the utility of MR fingerprinting combined with ADC mapping for characterizing TZ lesions. Materials and Methods: TZ lesions that were suspicious for cancer in men who underwent MRI with T2-weighted imaging and ADC mapping (b values, 50-1400 sec/mm(2)), MR finger printing with steady-state free precession, and targeted biopsy (60 in-gantry and 15 cognitive targeting) between September 2014 and August 2018 in a single university hospital were retrospectively analyzed. Two radiologists blinded to Prostate Imaging Reporting and Data System (PI-RADS) scores and pathologic diagnosis drew regions of interest on cancer-suspicious lesions and contralateral visually normal TZs (NTZs) on MR fingerprinting and ADC maps. Linear mixed models compared two-reader means of T1, T2, and ADC. Generalized estimating equations logistic regression analysis was used to evaluate both MR fingerprinting and ADC in differentiating NTZ, cancers and noncancers, clinically significant (Gleason score >= 7) cancers from clinically insignificant lesions (noncancers and Gleason 6 cancers), and characterizing PI-RADS version 2 category 3 lesions. Results: In 67 men (mean age, 66 years +/- 8 [standard deviation]) with 75 lesions, targeted biopsy revealed 37 cancers (six PI-RAD Scategory 3 cancers and 31 PI-RADS category 4 or 5 cancers) and 38 noncancers (31 PI-RADS category 3 lesions and seven PI-RADS category 4 or 5 lesions). The T1, T2, and ADC of NTZ (1800 msec +/- 150, 65 msec +/- 22, and [1.13 +/- 0.19] x 10(-)(3) mm(2)/sec, respectively) were higher than those in cancers (1450 msec +/- 110, 36 msec +/- 11, and [0.57 +/- 0.13] x 10(-3) mm(2)/sec, respectively; P<.001 for all). The T1, T2, and ADC in cancers were lower than those in noncancers (1620 msec +/- 120, 47 msec +/- 16, and [0.82 +/- 0.13] x 10(-3) mm(2)/sec, respectively; P = .001 for T1 and ADC and P = .03 for T2). The area under the receiver operating characteristic curve (AUC) for T1 plus ADC was 0.94 for separation. T1 and ADC in clinically significant cancers (1440 msec +/- 140 and [0.58 +/- 0.14] x 10(-)(3) mm(2)/sec, respectively) were lower than those in clinically insignificant lesions (1580 msec +/- 120 and [0.75 +/- 0.17] x 10(-3) mm(2)/sec, respectively; P = .001 for all). The AUC for T1 plus ADC was 0.81 for separation. Within PI-RADS category 3 lesions, T1 and ADC of cancers (1430 msec +/- 220 and [0.60 +/- 0.17] x 10(-)(3) mm(2)/sec, respectively) were lower than those of noncancers (1630 msec +/- 120 and [0.81 +/- 0.13] x 10(-3) mm(/)(2)sec, respectively; P = .006 for T1 and P = .004 for ADC). The AUC for T1 was 0.79 for differentiating category 3 lesions. Conclusion: MR fingerprinting-based relaxometry combined with apparent diffusion coefficient mapping may improve transition zone lesion characterization. (C) RSNA, 2019
引用
收藏
页码:685 / 694
页数:10
相关论文
共 35 条
[1]   Transition zone prostate cancers: Features, detection, localization, and staging at endorectal MR imaging [J].
Akin, Oguz ;
Sala, Evis ;
Moskowitz, Chaya S. ;
Kuroiwa, Kentaro ;
Ishill, Nicole M. ;
Pucar, Darko ;
Scardino, Peter T. ;
Hricak, Hedvig .
RADIOLOGY, 2006, 239 (03) :784-792
[2]   Synopsis of the PI-RADS v2 Guidelines for Multiparametric Prostate Magnetic Resonance Imaging and Recommendations for Use [J].
Barentsz, Jelle O. ;
Weinreb, Jeffrey C. ;
Verma, Sadhna ;
Thoeny, Harriet C. ;
Tempany, Clare M. ;
Shtern, Faina ;
Padhani, Anwar R. ;
Margolis, Daniel ;
Macura, Katarzyna J. ;
Haider, Masoom A. ;
Cornud, Francois ;
Choyke, Peter L. .
EUROPEAN UROLOGY, 2016, 69 (01) :41-49
[3]   Differentiation of transitional zone prostate cancer from benign hyperplasia nodules: Evaluation of discriminant criteria at multiparametric MRI [J].
Chesnais, A. L. ;
Niaf, E. ;
Bratan, F. ;
Mege-Lechevallier, F. ;
Roche, S. ;
Rabilloud, M. ;
Colombel, M. ;
Rouviere, O. .
CLINICAL RADIOLOGY, 2013, 68 (06) :E323-E330
[4]   Prospective Inclusion of Apparent Diffusion Coefficients in Multiparametric Prostate MRI Structured Reports: Discrimination of Clinically Insignificant and Significant Cancers [J].
Costa, Daniel N. ;
Xi, Yin ;
Aziz, Muhammad ;
Passoni, Niccolo ;
Shakir, Nabeel ;
Goldberg, Kenneth ;
Francis, Franto ;
Roehrborn, Claus G. ;
de Leon, Alberto Diaz ;
Pedrosa, Ivan .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2019, 212 (01) :109-116
[5]   Logistic regression model for diagnosis of transition zone prostate cancer on multi-parametric MRI [J].
Dikaios, Nikolaos ;
Alkalbani, Jokha ;
Sidhu, Harbir Singh ;
Fujiwara, Taiki ;
Abd-Alazeez, Mohamed ;
Kirkham, Alex ;
Allen, Clare ;
Ahmed, Hashim ;
Emberton, Mark ;
Freeman, Alex ;
Halligan, Steve ;
Taylor, Stuart ;
Atkinson, David ;
Punwani, Shonit .
EUROPEAN RADIOLOGY, 2015, 25 (02) :523-532
[6]   Characterization of prostate cancer using T2 mapping at 3 T: A multi-scanner study [J].
Dinh, A. Hoang ;
Souchon, R. ;
Melodelima, C. ;
Bratan, F. ;
Mege-Lechevallier, F. ;
Colombel, M. ;
Rouviere, O. .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2015, 96 (04) :365-372
[7]   Prostate Cancer: Computer-aided Diagnosis with Multiparametric 3-T MR Imaging-Effect on Observer Performance [J].
Hambrock, Thomas ;
Vos, Pieter C. ;
Hulsbergen-van de Kaa, Christina A. ;
Barentsz, Jelle O. ;
Huisman, Henkjan J. .
RADIOLOGY, 2013, 266 (02) :521-530
[8]   Magnetic Resonance Imaging Guided Prostate Biopsy in Men With Repeat Negative Biopsies and Increased Prostate Specific Antigen [J].
Hambrock, Thomas ;
Somford, Diederik M. ;
Hoeks, Caroline ;
Bouwense, Stefan A. W. ;
Huisman, Henkjan ;
Yakar, Derya ;
van Oort, Inge M. ;
Witjes, J. Alfred ;
Futterer, Jurgen J. ;
Barentsz, Jelle O. .
JOURNAL OF UROLOGY, 2010, 183 (02) :520-527
[9]  
Hansen MS, 2013, MAGN RESON MED, V69, P1768, DOI [10.1002/mrm.24389, 10.1002/mrm.24743]
[10]   Diffusion-Weighted Magnetic Resonance Imaging in the Prostate Transition Zone Histopathological Validation Using Magnetic Resonance-Guided Biopsy Specimens [J].
Hoeks, Caroline M. A. ;
Vos, Eline K. ;
Bomers, Joyce G. R. ;
Barentsz, Jelle O. ;
Hulsbergen-van de Kaa, Christina A. ;
Scheenen, Tom W. .
INVESTIGATIVE RADIOLOGY, 2013, 48 (10) :693-701