RECURSIVE GENERALIZED MAXIMUM CORRENTROPY CRITERION ALGORITHM WITH SPARSE PENALTY CONSTRAINTS FOR SYSTEM IDENTIFICATION

被引:20
作者
Ma, Wentao [3 ]
Duan, Jiandong [3 ]
Chen, Badong [1 ]
Gui, Guan [2 ]
Man, Weishi [3 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Jiangsu, Peoples R China
[3] Xian Univ Technol, Sch Automat & Informat Engn, Xian 710048, Peoples R China
基金
中国国家自然科学基金;
关键词
Recursive generalized correntropy criterion; correntropy induced metric; l(1)-norm; sparse system identification; non-Gaussian noise; CHANNEL ESTIMATION; RLS ALGORITHM; REGULARIZATION; OPTIMIZATION; CONVERGENCE; EFFICIENCY; NOISE;
D O I
10.1002/asjc.1448
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To address the sparse system identification problem in a non-Gaussian impulsive noise environment, the recursive generalized maximum correntropy criterion (RGMCC) algorithm with sparse penalty constraints is proposed to combat impulsive-inducing instability. Specifically, a recursive algorithm based on the generalized correntropy with a forgetting factor of error is developed to improve the performance of the sparsity aware maximum correntropy criterion algorithms by achieving a robust steady-state error. Considering an unknown sparse system, the l(1)-norm and correntropy induced metric are employed in the RGMCC algorithm to exploit sparsity as well as to mitigate impulsive noise simultaneously. Numerical simulations are given to show that the proposed algorithm is robust while providing robust steady-state estimation performance.
引用
收藏
页码:1164 / 1172
页数:9
相关论文
共 35 条
[1]  
[Anonymous], 2011, FIXED POINT ALGORITH
[2]   SPARLS: The Sparse RLS Algorithm [J].
Babadi, Behtash ;
Kalouptsidis, Nicholas ;
Tarokh, Vahid .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (08) :4013-4025
[3]   COMPARISON OF ADAPTIVE AND ROBUST RECEIVERS FOR SIGNAL-DETECTION IN AMBIENT UNDERWATER NOISE [J].
BOUVET, M ;
SCHWARTZ, SC .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1989, 37 (05) :621-626
[4]   Generalized Correntropy for Robust Adaptive Filtering [J].
Chen, Badong ;
Xing, Lei ;
Zhao, Haiquan ;
Zheng, Nanning ;
Principe, Jose C. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (13) :3376-3387
[5]   Convergence of a Fixed-Point Algorithm under Maximum Correntropy Criterion [J].
Chen, Badong ;
Wang, Jianji ;
Zhao, Haiquan ;
Zheng, Nanning ;
Principe, Jose C. .
IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (10) :1723-1727
[6]   Steady-State Mean-Square Error Analysis for Adaptive Filtering under the Maximum Correntropy Criterion [J].
Chen, Badong ;
Xing, Lei ;
Liang, Junli ;
Zheng, Nanning ;
Principe, Jose C. .
IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (07) :880-884
[7]   Maximum Correntropy Estimation Is a Smoothed MAP Estimation [J].
Chen, Badong ;
Principe, Jose C. .
IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (08) :491-494
[8]  
Chen YL, 2009, INT CONF ACOUST SPEE, P3125, DOI 10.1109/ICASSP.2009.4960286
[9]   Sparsity regularised recursive least squares adaptive filtering [J].
Eksioglu, E. M. .
IET SIGNAL PROCESSING, 2011, 5 (05) :480-487
[10]  
EKSIOGLU EM, 2010, P INT C INF SCI SIGN, P550