Linear and bilinear estimates for oscillatory integral operators related to restriction to hypersurfaces

被引:30
作者
Lee, Sanghyuk [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
oscillatory integral operators;
D O I
10.1016/j.jfa.2006.05.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain bilinear estimates for oscillatory integral operators which are variable coefficient generalizations of bilinear restriction estimates for hypersurfaces. As applications, we improve the known estimates for oscillatory integrals. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:56 / 98
页数:43
相关论文
共 29 条
[1]  
[Anonymous], T AM MATH SOC
[2]  
Bourdoux P P, 1991, Thyroid, V1, P147, DOI 10.1089/thy.1991.1.147
[3]  
Bourgain J., 1991, Geom. Funct. Anal, V1, P321, DOI DOI 10.1007/BF01895639
[4]  
Bourgain J., 1995, Princeton Math. Ser., P83
[5]  
Bourgain J., 1995, OPERATOR THEORY ADV, V79, P41
[6]   OSCILLATORY INTEGRALS AND A MULTIPLIER PROBLEM FOR DISK [J].
CARLESON, L ;
SJOLIN, P .
STUDIA MATHEMATICA, 1972, 44 (03) :287-&
[7]   OSCILLATORY INTEGRALS AND MULTIPLIERS ON FLP [J].
HORMANDER, L .
ARKIV FOR MATEMATIK, 1973, 11 (01) :1-11
[8]   A local smoothing estimate in higher dimensions [J].
Laba, I ;
Wolff, T .
JOURNAL D ANALYSE MATHEMATIQUE, 2002, 88 (1) :149-171
[10]   Bilinear restriction estimates for surfaces with curvatures of different signs [J].
Lee, Sanghyuk .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (08) :3511-3533