We develop and analyze a new strategy for the spatial discontinuous Galerkin discretization of wave equations in second-order form. The method features a direct, mesh-independent approach to defining interelement fluxes. Both energy-conserving and upwind discretizations can be devised. We derive a priori error estimates in the energy norm for certain fluxes and present numerical experiments showing that optimal convergence in L-2 is obtained.
机构:
Ohio State Univ, Dept Math, Columbus, OH 43221 USAOhio State Univ, Dept Math, Columbus, OH 43221 USA
Chou, Ching-Shan
Shu, Chi-Wang
论文数: 0引用数: 0
h-index: 0
机构:
Brown Univ, Div Appl Math, Providence, RI 02912 USAOhio State Univ, Dept Math, Columbus, OH 43221 USA
Shu, Chi-Wang
Xing, Yulong
论文数: 0引用数: 0
h-index: 0
机构:
Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA
Univ Tennessee, Dept Math, Knoxville, TN 37996 USAOhio State Univ, Dept Math, Columbus, OH 43221 USA
机构:
Ohio State Univ, Dept Math, Columbus, OH 43221 USAOhio State Univ, Dept Math, Columbus, OH 43221 USA
Chou, Ching-Shan
Shu, Chi-Wang
论文数: 0引用数: 0
h-index: 0
机构:
Brown Univ, Div Appl Math, Providence, RI 02912 USAOhio State Univ, Dept Math, Columbus, OH 43221 USA
Shu, Chi-Wang
Xing, Yulong
论文数: 0引用数: 0
h-index: 0
机构:
Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA
Univ Tennessee, Dept Math, Knoxville, TN 37996 USAOhio State Univ, Dept Math, Columbus, OH 43221 USA